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1.0 RESEARCH SUMMARY

This year we focused on unsupervised learning and adaptive
fuzzy systems. Graduate students Seong-Gon Kong and Peter Pacini
assisted me in simulations and paper preparation. (USC’s School
of Engineering, not AFOSR, financially supported Peter Pacini.)

In unsupervised 1learning, we explored the differential
competitive learning law. This unsupervised learning law differs
from the standard competitive learning law, which modifies a
synapse only if its post-synaptic neuron "wins" a competition for
activation or pattern stimulation. The differential competitive
learning (DCL) law modifies the synapse only if its post-synaptic

neuron changes. Standard competitive 1learning ignores this




.

instantaneous win-rate information. The plus-or-minus sign of
the neuronal time derivatives endows DCL with many of the coding
properties shared by supervised competitive learning laws, which
reward or punish synapses, according as the post-synaptic neuron
classifies or misclassifies an input pattern, by changing the
sign of a difference term.

We showed that DCL behaves as a type of adaptive delta-
modulation procedure. When sampling highly correlated data, such
as speech data, the pairwise difference of of samples provably
contains more information (has less variance) than the samples
themselves.

We tested DCL against both unsupervised and supervised
competitive 1learning (SCL) for centroid estimation and for
phoneme recogntion. DCL consistently outperformed SCL, which
always outperformed unsupervised competitive learning. In the
nonlinear case, DCL synaptic vectors converged to pattern-class
centroids faster than SCL synaptic vectors conv rged to them. 1In
the linear case, both types of synaptic vectors converged equally
quickly to centroids. But once the synaptic vectors reached the
centroids, DCL synaptic vectors wandered less about the centroids
than the SCL synaptic vectors wandered. (Since we modeled
learning with stochastic differential equations, stochastic
equilibria corresponds to Brownian wandering about a fixed
point.) The paper YDifferential Competitive Learning for
Centroid Estimation and Phoneme Recognition" summarizes these
results and will appear in the January 1991 issue of the IEEE

Transactions on Neural Networks.




In adaptive fuzzy systems, I developed the general AFAM
(adaptive fuzzy associative memory) methodology and successfully
applied it to two control problems: backing up a truck-and-
trailer rig in a parking lot (a mathematically unsolved control
problem) and realtime target tracking. This research, along with
my pure research on fuzzy set theory, published this summer as
"Fuzziness vs. Probability" in the International Journal of
General Systems, has generated widespread technical and popular
interest. Several popular and technical publications have
featured it. These publications include Electronic Engineering
Times, the Los Angeles Times, Popular Science, the Economist, and

Breakthroughs. As program chairman of the first international

conference on neural network and fuzzy theory in Iizuka Japan in
July 1990, I presented these concepts to a wide international
audience in my plenary lecture.

The Kkey research contribution was product space clustering
(PSC) . I developed the geometry of fuzzy systems as mappings
between unit hypercubes. (Fuzzy sets define points in unit
hypercubes. Nonfuzzy sets define the 21 vertices of an n-
dimensional hypercube.) PSC estimates a fuzzy system as a
surface in the system’s input-output product state space. We
partition the input-output state space into FAM cells. Each FAM
cell defines a fuzzy "rule" or deneral association of fuzzy
output descriptions with fuzzy input descriptions: If the
traffic is HEAVY in one direction, then keep the 1light green

LONGER in that direction. (HEAVY, LONGER) defines a FAM rule in




the input-output state space as region or mini-Cartesian product.
PSC estimates these regions with unsupervised learning.

I showed how to use differential competitive 1learning to
adaptively, quickly, and reliably generate banks of structured
fuzzy rules given only the input-output training data generated
by the physical process, the human controller, or, in general,
the system we wish to estimate. We can present the same input-
output data to a neural network. The neural network may or may
not accurately estimate the underlying unknown function (or joint
probability distribution). But it can generate only a black-box
or "model-free" estimate. Stand-alone neural networks do not
generate stuctured rules.

We benchmarked neural and fuzzy systems for backing up a truck,
and also a truck-and-trailer, in a parking lot. Both systens
controlled the truck and truck-and-trailer successfully. But the
fuzzy system was orders of magnitude easier to construct and, in
the adaptive case, train. We could also modify the fuzzy system
directly by manipulating its bank of FAM rules. We tested the
fuzzy system’s robustness by removing random subsets of FAM rules
and by deliberately important rules with destructive or
"sabotage" rules, In general we found that fuzzy system
performance degrades significantly only if we remove over 50% of
the FAM rules. We also showed how to convert every neural
network system to a structured fuzzy system, complete with bank
of FAM rules, that approximates the underlying neural system. We

demonstrated this for both the backpropagation truck and truck-




and-trailer systems. The generated fuzzy systems performed
comparably to the original fuzzy systems.

We benchmarked an adaptive fuzzy system for realtime target
tracking against an ‘“optimal" 1linear Kalman-filter control
system. Again both systems controlled the process well. The
fuzzy system gave finer control, involved far less computation,
required no assumption of how control outputs mathematically
depended on control inputs, and proved robust when we removed FAM
rules or replaced them with sabotage rules. The Kalman-filter
controller proved sensitive to the variance of the unmodeled-

effects parameter.

2.0 PUBLICATIONS

The above research led to several technical papers. We
published some in proceedings and some in journals. Others await
appearance or remain in the review process. This report includes

copies of papers.

2.1 Journal Papers

1. Kosko, B., "Unsupervised Learning in Noise," IEEE




A

S jons o w s, vol. 1, no. 1, 44 - 57, March

1990.

2. Kosko, B., "Structural Stability of Unsupervised Learning in
Feedback Networks," IEEE Transactions on Automatic Control, in

press, 1990.

3. Kosko, B., "Fuzziness vs. Probability," International Journal

of General Systems, vol. 17, no. 2, 211 - 240, 1990.

4. Kosko, B., "“Differential Competitive Learning for Centroid
Estimation and Phoneme Recognition," with S.G. Kong, IEEE

Transactions on Neural Networks, to appear, January 1991.

5. Kosko, B., “sStochastic Competitive Learning," in review at

IEEE Transactions on Neural Networks, 1990.

6. Kosko, B., "Adaptive Fuzzy Systems for Backing Up a Truck-
and-Trailer," with S.G. Kong, in review at IEEE Transactions on

Neural Networks, 1990.

7. Kosko, B., "Adaptive Fuzzy System for Target Tracking," with
P.J. Pacini, in review at IEEE Transactions on Automatic Control,

1990.

8. Kosko, B., "Fuzzy Associative Memories," to be submitted to

Neural Networks, 1990.




2.2 Conference Proceedings Papers

1. Kosko, B., "Stochastic Competitive Learning," Proc. IJCNN-90,

vol. II, 215 - 226, June 1990.

2. Kosko, B., "Comparison of Fuzzy and Neural Truck Backer-Upper
Control Systems," with S.G. Kong, Proc. IJCNN-90, vol. III, 349-

358, June 1990.

3. “Differential Competitive Learning for Centroid Estimation

and Phoneme Recognition," Proc. European Conference on neural
Netowrks, Prague, Czechoslovakia, September 1990.

3.0 NEXT-YEAR RESEARCH OBJECTIVES

In the third year of this research program we will continue to
explore the relationship between unsupervised neural network
systems and fuzzy systems.

We need to explore both the feedback dynamics of differential
competitive learning and the feedforward encoding structure of

pulse-coded DCL synapses. We have not fully exploited the delta-




modulation nature of DCL. The delta-modulation structure of DCL
suggests that digital DCL systems may provide viable highspeed
communication devices.

We need to explore the adaptive fuzzy methodology outside the
domain of control. Two promising areas are image/signal
processing and communication theory. The AFAM methodology may
allow us to estimate image-compression schemes without detailed
eigenvector math models. Communication systems depend on local
highspeed decisions made with uncertain, usually probabilistic,
information. Adaptive fuzzy systems may allow us to introduce
"intelligent communication" at modulation, spreading/depsreading,

or encoding/decoding level.
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Unsupervised Learning in Noise

BART KOSKO.

Abstract—The structucal stability of real-time unsupervised learn-
iag i feedback dynamical systems is demonsteated with the stochastic
calcutus. Stractural stability allows globally stable feedback systeeas to
be pertuched without changing theie qualitative equitibirium hehavior.
These stachastic dynamical systems ace called random adaptive bidirec-
tional associative memory (RABAM) modecls, which include several pop-
ular nonadaptive and adaptive feedback maodcels, such as the Hopfield
circuit and the ART-2 modcl. RABAM nctworks can adapt with
different stable unsupervised learning laws. These include the signal
Hebb, competitive, and ditferential Hebb taws. A ncw hybrid learning
law, the differential competitive law, which uses the neuronal signal ve-
tocity as a local unsupervised reinforcement mechanism, is introduced
2nd its coding and stability behavior in feedforward and feedback net-
worhy is examined. This analysis is facilitated by the receat Gluck-
Parker pulse<oding interpretation of sigaat functioans in diffecential
Hebbian lcarning systems. The second-order behavior of RABAM
Brownian-diffusion systems is summarized by the RABAM noise
suppression theorem: The mean-squared activation and svnaptic ve-
locities decrease exponentially quickly to their lower bounds, the in-
stantaneous noise variances driving the system. This result is extended
to the RABAM anncalin model, which provides a unified framework
from which to analyze Geman-Hwang combinatorial optimization dy-
namical systems and continuous Boltzmann machine learning.

I. STRUCTURAL STABILITY IN HARDWARE, BiloLoGy,
AND MANIFOLDS

OW robust are unsupervised leaming systems? What

happens if real-time synaptic mechanisms are per-
turbed in real time? Will shaking disturb or prevent equi-
libria? What effect will thermal noise processes, electro-
magnetic interactions, and component malfunctions have
on large-scale implementations of unsupervised neural
networks? How biologically accurate are unsupervised
ncural models that do not model the myriad electrochem-
ical, molecular, and other processes found at synaptic
junctions and membrane potential sites?

These questions are different ways of asking a more
general question: 1y unsupervised lecaming structurally
stable? Structural stability 9], {42] allows globally stable
feedback systems to be perturbed without changing their
quahitative cequilibrium behavior, Thas inereases the reli-
abtlity of targe-scale hardware implementations of such
nctworks. 1t also tacreases their biological plausibility,

Manuscrpt cecerved Apal 10, 1989 revised October 9. 1989 This work
was supported by the A Force Othee of Saicnnfic Rescarch (AFOSR 88-
0236} An cariter version of this paper was presented at the 1989 Intcna
tiona! Jomnt Conference on Nearal Networks (HJONN ROy Washinpion, DO,
June 18 22 19849
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since the mynad synaptic and neuronal processes missing
from neural network models now are modeted, but as net
random unmodcled cflects that do not affect the structure
of the global network computations.

Structural stability differs from the global stability, or
convergence 10 fixed points, that endows some feedback
nctworks with content addressable memory, and other,
computational properties. Globully stable systems can be
sensitive 1o initial conditions. Different inputs states can
converge to different himit states; ¢lse memory capacity is
tivial. Structural stabiluty 1s insensttivity to small pertur-
bations. Such perturbation preserves qualitative proper-
ties. In particular, basins of attractions maintain their basic
shape. In some intuitive sense, chaos [36] is the antithesis
of structural stability, or, more accurately, structurally
stable fixed-point attractors (since chaotic attractors can
be storcturally stable).

The formal approach to structural stability uses the
transversality techniques of differential topology [17], the
study of global properties of differentiable manifolds.
Manifolds 4 and B have nonempty transversal intersec-
tion in R" if the tangent spaces of A and B span A" at every
point of intersection, if locally the intersection looks like
R". Two lines intersect transversely in the plane but not
tn 3-space, 4-space, or higher n-space. If the lines are
shaken in 2-space, they still intersect. If shaken in 3-
space, the lines may no longer intersect. In Fig. 1, man-
ifolds A and B intersect transversely in the plane at points
a and b. Manifolds B and C do not intersect transversely
at c.

An indirect approach to structural stability uses the cal-
culus of stochastic differential and integral equations [35].
[41]. This is the approach used in this paper. The sto-
chastic-calculus approach abstracts statistically relevant
behavior from large sets of functions. The differential-to-
pological approach, in contrast, i1s concermned with all pos-
sible behavior of all tunctions (open dense sets of func-
tions). This makes the analysis extremely abstract -and
calculations cumbersome and often impractical.

The stochastic calculus 1s ditlicult to work with as well,
bur usually less ditheult than transversality techniques.
The new complexity that anses in passing from systems
of differenual equations to systems of stochastic differ-
ential equations is due to the nature of solution points. In
algebraic equations, such as 24 + 3 = 4y, points in the
solution space are nambers Solutions to differential equa-
tons are functions. Soluttons to stochastic differential
cquations arc random processes [41].

1045 9227/90/0300 00443801 00« 1990 1EELE
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Muanitold sntcesection an the plane ¢manfold R). Intersection
Poing ¢ v pot manifolds 8 and C need
No points are transversal in

Fag
points ¢ and boare teansversal
not ntersedt 3f even shphily penuibed
3oapace undess # s g sphere

Below we demonstrate the structural stability of many
types of unsupervised leaming 1n the stochastic sense. The
key idea is to use the scalar-valued Lyapunov function of
globally stable feedback networks but in a random frame-
work. Then the old Lyapunov function 1s a random vari-
able at each moment of time 7, so it cannot be minimized
as when 1t was a scalar at cach 7. The trick s to minimize
its expectatton, its average vatue, which is a scalar at 1.

Il. Four UNSUPERVISED ASSOCIATIVE LEARNING LAws

The distinction between supervised and unsupervised
learning depends on information. In pattem-recognition
theory, for instance, the distinction is in terms of knowl-
edge of class boundanes. Pattern recognition is super-
vised if the training algorithm requires knowing the class
membership of the training samples, unsupervised if it
does not require it.

A similar distinction holds in neural networks. Super-
vised leaming invariably refers to deliberate gradient de-
scent in the space of all possible synaptic values. Class
membership information is needed to compute the nu-
merical error vector or error signal that guides the gra-
dient descent.

Unsupervised leaming usually refers to the modifica-
tion of biological synapses with physically local signal
information. Class membership information of training
samples is not needed. These systeins adaptively cluster
patterns into classes by, for cxample, evolving *‘win-
ning’’ ncurons in a competition for activation, or by
cvolving diffcrent basins of attraction in the state spacc.
We shall restrict our attention to such biologically moti-
vated leaming methods, knowing that other types of un-
supervised learning arce possible and may be of practical
cngincering value.

Unsupervised leaming laws are first-order difierential
equations that describe how synapses evolve in time with
locally available information. This information usually
involves synaptic propertics or neuronal stgnal propertics.
In principle, and in mammalian brains or optoclectronic
integrated circuits, other types of information may be lo-
cally available for computation, phal cclls, specific and
nonspectfic hormones, background clectromagnetic cf-
feets, or light pulses. These phenomena are modeled be-
low as nct random paramceters. For the moment they will
be ignored. Locality allows asynchronous synapses to op-
erate in real time. Mathematically, 1t also gready shrinks
the function space of possible unsupervised learming laws.

as

Associativity further shrinks the function space. Glob-
tlly, ncural networks associate patterns with patterns.
They estimate continuous functions. Locally, synapses arc
required to assoctate signals with signals. This leads 1o
conjunctive, or multiplicative, lcaming laws constrained
by locality. This in tum leads to at least three types of
lcarning laws and a new hybnid law.

The four unsupervised associative leaming laws dis-
cussed in this section are 1) the signal Hebb leaming faw,
2) the competitive lcarning faw, 3) the differcntial Hebb
leaming law, and 4) the new hybrid law, the differential
competitive leaming law.

A. Signal Hebbian Learning
The signal Hebb leaming law correlatcs neuronal sig-
nals, not activations:

m, = —m, 4 $¥(x,) S;Y(y/)

y (1)
where the overdot indicates time differentiation, m,  is the
synaptic efficacy of the directed axonal edge from the ith
neuron in ficld Fy to the jth neuron in field Fy, x; and y,
are the respective real-valued activations or membrane
potentials of the connected neurons, and S,?‘ and S,-Y, here-
after abbreviated to §; and §,, are the bounded monotone-
nondecreasing signal functions of the connected ncurons
that transduce their time-averaged potential differences
into time-averaged frequencies of pulse trains, and where,
as in all equations in this paper, scaling constants can be
multiplied or added where desired. The logistic signal
function S(x) = (1 + e ) "', with ¢ > 0, remains the
most popular signal function for simulations and appli-
cations. The logistic signal function is also strictly mono-
tone increasing, since ' = dS(x)/dx = ¢S(1 — §) >
0. Strict monotonicity strengthens stabiliiy results.

The solution to (1) is an integral cquation sincc in gen-
cral x; and y, depend on m,. The key component of this
integral equation is an exponentially weighted average of
sampled pattems:

m, (1) = m(0)e " 4 g S(s)S,(s)e""ds. (2)
0

The exponential weight is inherent in the first-order struc-
wire of (1), It produces a recency effect on memory, as in
our everyday exponential decrease ta retained informa-
ton. This well-known recency effect is the thrust of phi-
losopher David Hume's quote: " The liveliest thought sull
1s infenor to the dullest sensation. " Nothing is more vivid
than now.

B. Competitive Learning

The competitive learning law is obtained from (1) if the
passive decay term - o, 1s modulated by the appropriate
local sipnal:

m, - S|S, - m, (3)

i

v

The *'competitiveness™ i (3) is andirect. The assump-
tion 1s that ncurons compete for activation in the ficld £,
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in the sense that the symmetric (distance-dependent) in-
trafield conncctions of Fy arc laterally inhibitive: the
square symmnetic matrix @ of intrafield conncctions is
positive main-diagonal and nonpositive off-diagonal, or,
more generally, Q has nonnegative blocks on its main di-
agonal and nonpositive blocks clsewherc. Then §) is a win-
loss index of the jth Fy ncuron’s performance. In practice
(391 §, is invanably a O-1 threshold function or steep lo-
gistic function, which bchaves as a threshold function.
Thea (3) says learn only if win. If the jth vait wians, the
signal pattern S(X) = (S¢(xy), ..., S,(x,)) generated
at Fy is encoded as the jth column of the n-by-p connec-
tion matrix exponentially quickly. This ‘‘grandmcther
synapse’’ effect differs from Hebbian leaming, where pat-
tem information is superimposed on all of M. Then every
synapse participates in learning new patterns while, un-
fortunately, forgetting learned patterns.

Both (1) and (2) were ..udied as early as the 1960’s by
Grossberg {12]. Kohonen [24] and Hecht-Nielsen [15] use
the competitive law (3) statistically for unsupervised clus-
tering in their respective seif-organizing map and coun-
terpropagation networks. The p columns of M then tend
toward the centroids of the sampled p decision classes,
even though the underlying probability density functions
are unknown.

C. Differential Hebbian Learning

The differential Hebb law {25}-[27], (32], [33], and its
variants, correlates signal velocities as well as signals:

where, by the chain rule
ds(x) _ dS;dx, _
dt dx; dt

If signals are locally available to synapses, so are signal
velocities, at least implicitly. Since the signal function §;
is an abstraction of time-averaged spiking frequencies, S;
is often assumed nonegative. Then Hebbian synapses (1)
can only grow in time. Signal velocities, of course, can
be both positive and negative. Correlated (lagged) signals
provide a local *‘arrow of time™’ that synapses can exploit
[33] to encode time-varying patterns as limit cycles. Klopf
[21]-123] independently arived at a simitar discrete (dif-
ference) version of (4) in his drive-reinforcement theory
of animal [earning.

Recently Gluck and Parker {10}, [11] showed that dif-
ferential Hebbian lcaming becomes significantly more
plausiblc in nervous systems if we recall that real neurons
transmit discrete pulse-coded information and we struc-
ture the signal functions §; and §; accordingly. Suppose x,
and y, arc pulse functions: x,(¢) = | if a pulse occurs at
time ¢, 0 if not, and similarly for y, (7). Then the signal
frequencies S, and S, can be estimated as exponentially
weighted time averages:

i Xi-

S(r) = y mx,(s)(’"'(l.s' (5)
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'
S, (1) = j y,(s)e' T ds. (6)
p.
By recalling the form of the solution to a lincar inhomo-
gencous, first-order differential question, the signal ve-
locitics are scen to be simple, locally available, differ-
ences:

5(1) = x,(1) = S(1) (7)
S,(1) = y,(1) = S0). (8)

Thus a signal velocity has the form of a reinforcement
signal: a pulse less the current expected frequency of
pulses. As Gluck and Parker abserve, not only are these
diffcrences locally available, they can be computed in real
time without unstable differencing techniques.

For stability purposes, we note another consequence of
pulsc-coded signal functions. They show how Hebbian
lecamning can be a special casc of differential Hebbian
learning. Suppose the Hebb product S, S, in (4) is scaled
down to zero:

m; = ~m, + S,Sl

i (9)

This is the ‘“‘classical’’ differential Hebb law [25]-[27]).
Then substituting (7) and (8) into (9) gives

m

i = (10)

which is equivalent to the signal Hebb law (1) if and only
if the term in braces is zero. Thus the simple differential
Hebb law (9), and of course (4) suitably scaled, reduces
to the signal Hebb law when no pulses occur, when x;(r)
= y;(¢) = 0. This happens frequently. For, in any con-
nected time interval, the set v of times where pulses oc-
cur, {¢' x;(1') = 1}, has Lebesgue measure zero. (Con-
sider pulses at rational time points or at Cantor set points.)
This interpretation, though, would imply [38] by (5) and
(6) that §; = §; = 0 almost everywhere, so the integrals
in (5) and (6) would have to be replaced with discrete
sums (using potnt-mass measures).

The infrequency of unit pulses occurs while the synapse
m,; continually modifies its behavior. When instantaneous
pulse information is not available, the synapse *‘fills in™’
with expected pulse frequencies, and hence Hebbian
leaming. Since signal Hebbian leaming is unconditionally
stable (thc ABAM theorem, reviewed below) in maay
nonlincar dynamical systems, including popular feedback
ncural networks, pulse-coded differential Hebbian dy-
namical systems may be stable over a wider range of sys-
tem parameters than carlier velocity-acceleration stability
assumptions [32], [33] suggested.

—my + 5,5 + [xy, — xS, ~ y5]

D. Differential Competitive Learning

The fourth unsupervised lcarning faw 1s a new hybrid
lecaming law, the differential competitive faw:

(1)

The idea is learn only if change. As with the competi-
tive leaming law (3), the ncurons in £y compete for acti-

m, = S§|S, - m,
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vation, and the nonncgative signal functions S, keep score.
The signal velocity §; in (11) is a local reinforcement
mechanism. Its sign indicates whether the jth ncurons are
winning or losing, and its magnitude measures by how
much. The coding and dynamical behavior of (11) can be
analyzed with the pulsc-coding interpretation [10), {11]
of signal functions and by comparison with Kohonen's
recent “‘supervised’' adaptive-vector-quantization algo-
rithm [24].

The pulse-coded differential competitive lcarning law
is the difference of nondifferential competitive laws:

m; = (y, — SHS - m;;) (12)
.V,[S, - "‘.‘,] - S,[S. - mg (13)

where x, is a 0-1 pulse function. Hence the standard com-
petitive leaming faw (3) is recovered when y; = 1 and §;
= (. This occurs when the jth unit has just won the com-
petition for activation within Fy.

Usually in a competition there are many more losers
than winners. So suppose the jth neuron in Fy is a loser at
time . Then y;(1) = 0 holds and has held over some,
perhaps short, past interval {¢', r]. Then §;(¢1) = 0 (or
nearly 0) by the exponential-weight structure of (6). So
no change, no learning.

Now suppose the jth unit wins in the next instant 7. Then
y; = 1 over some interval [1, 1] of nonzero Lebesgue
measure. During this interval the exponential-weight
structure of S; soon drives S; toward 1, which we take as
the upper bound of S;. This means m;; quickly approaches
a positively scaled version of the signal §;.

Now suppose the jth unit goes from winning to losing.
Then at firsty; = O and §; = 1. As §; quickly falls to zero,
learning slows then stops when y; = §; = 0. Meanwhile
m;; has “*‘moved away'" from the signal §;. The signal ve-
Iocny S has “‘punished’’ the jth unit.

Kohonen [24] uses a sign change to punish misclassi-
fying prototype vectors trained with the competitive
leamning law in his feedforward ‘‘supervised’” adaptive
vector quantization (AVQ) system. In vector formulation,
the p reference vectors m (1), m, (1) are the respec-
tive prototypes at time r of the p decision classes D,

. D, that partition the signal space R". The p refer-
ence vcclors arc also the p columns of the synaptic matrix
M.m, = (m,, ...,m,) is the fan-in of synapses of the
ith neuron in Fy. Al Fy neurons are engaged in winner-
take-all competition. Given a random training sample
vector x(t) presented at Fy, the Fy competition 1S sum-
marnized by finding the seference vector m,(l) closest to
x(1) in Euclidean distance: I|x — m, || = min {|{|x — m E
i=1, . p}. “*Supervision™ means we know which
dccismn cla.\s the random vector x was chosen from. If x
belongs to D, the class represented by my, then m is re-
warded by moving m, a littic closer to x. This allows m,
to gradually approximate the centroid of D,. (The cen-
troid, or conditional expectation, minimizes the mean-
squared-error of vector quantization {37).) Else if x docs
not belong to D), m, is punished for misclassifying x as a
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D, pattern by moving m, a littlc farther away from x, pre-
sumably out of regions of misclassification. This s
achieved by a simple sign change:

m(1) + c()[x(1) - m(1)]. xe D,

m(t + 1) = (14)
m(1) = c()[x(r) = m(1)]. x¢ D,

(13)

m;(r + 1) = m;(r) for all losing ncusons in Fy (16)

where ¢(0), c(1), c(2), . is a slowly dccreasing sc-
quence of small (¢(0) < 1) lcaming constants. Koho-
nen’s ‘‘unsupervised®® AVQ algorithm eliminates the
punishment equation (15) and relaxes (14) by allowing
x(1) 1o belong to any decision class. The unsupervised
algorithm is clearly a discrete stochastic version of the
competitive law (3) in vector notation. Kohonen shows
that under appropriate statistical conditions, ‘he equilib-
num condition of the AVQ unsupervised-clustering ai-
gorithm occurs when the p reference vectors m; asymp-
totically arrive at the centroids of their respective decision
classes. Kohonen next shows that the equilibrium condi-
tion of the supervised AVQ algorithm is similar in struc-
ture to that of the optimum unit-cost Bayes classifier, and
cites simulation data in suppont of this similarity.

The differential competitive law (11) can be viewed as
a local unsupervised approximation of Kohonen's super-
vised AVQ algorithm. Indeed preliminary simulations of
(11) in stochastic feedforward mode show similar classi-
fication performance in many noise environments.

The pulse-coded differential competitive law (12), as
discussed above, can be expected to often behave as the
competitive law (3) with 0-1 threshold signal functi 'n §;.
This is precisely when the competitive law has been stywn
{32] globally stable when embedded ia the nonlinear -ty-
namical systems below. For this reason, we here limit ihe
stability analysis of the differential competitive law to t.- -t
of the competitive law with steep signal function §;. ¥ ¢
simlarly limit the stability analysis of the differential Heb»
law (4) to the analysis of the signal Hebb law, even though
differential Hebb dynamical systems are known [32], {33]
globally stable in the special case that signal VClOCI(lC§ arc
comparable to signal accelerations.

S

I11. UNIDIRECTIONAL AND BIDIRECTIONAL NONLINEAR

DyYNAMICAL SYSTEMS

We study nonlincar dynamical systems described by
Cohen-Grossberg [6], [14] dynamics. In the unidirec-
tional or autoassociative casc, when Fy = Fpand M =
M, a ncural nctwork possesses Cohen-Grossherg dy-
namics if its activation cquations can be written in the
abstract form

5= —a(x)| b(x) - 2 Si(x,)m, (17)
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where a,(x;) = 01s an amplification function, b, is arbi-
trary so long as it keeps the integrals bounded in the Lya-
punov functions below, and §, is a bounded monotone
nondecreasing (S, = 0) signal function. The global sta-
bility of nonlcaring autoassociative systems described by
(17) is cnsured by the Cohcn-Grossberg theorem {6},
which is abstractly equivalent—in the sensc that R” x R”
= R"*’—t0 the BAM thcorem below for nonleaming het-
eroassociative nctworks and a special case of the ABAM
thcorem reviewed in the next section.

Perhaps the most important special cases of (17) are
additive and shunting nctworks, the popular versions of
which are the respective Hopfield circuit {19] and the
Hodgkin-Huxley membrane cquation [18]. Grossberg
{14], has also shown that (17) reduces 1o the additive
brain-state-in-a-box model of Anderson [1], [2] and the
shunting masking field model [7] upon appropriate change
of variables. An autoassociative system has additive ac-
tivation dynamics if the amplification function a; is con-

stant and the b, function is linear. For instance, if a;, =

1/Ci. b, = (x;/R:) ~ I, Si(x;) = g:(x;) = V,, and con-
stant m; = m;; = T; = Tj;, where C; and R; are positive

constants and input /; is constant or slowly varying rela-
tive to fluctuations in x;, then (17) reduces to the Hopficld

circuit [19]:

—1%,-+ g_jv,-T,-jJrl,-. (18)

Grossberg [13] has shown that neurons with additive
dynamics saturate at their upper bounds (if they have
them) when inputs are arbitrarily large, thus ignoring the
relative pattern information in the input pattem (/,, . . . ,
1,).

An autoassociative network has shunting or mulgipli-
cative activation dynamics when the amplification func-
tion a; is linear and b; is nonlinear. For instance, if q; =
—x,-, m;; = 1 (self-excitation in lateral inhibition), and b,

= (1/x) [ —Aix; + B(S; + I) — x(S; + 1') —
C( L. S;m; + I7)], gives the distance-dependent (m;;
m;;) unidirectional shunting network:

x5 = ~Ax, + (8, — x)[S(x) + 1]

- (C + x,-)[ Z» Si(x;)ym,; + l,‘] (19)

where A, is a positive decay constant and B; and C; are
positive saturation constants. The first term on the right-
hand side of (19) is a passive decay term. The second and
third tcrms are, respectively, positive and negative feed-
back terms. (Strictly speaking, a,(x,) must be kept posi-
tive. x, can always be translated to achieve this.) If the
shunting x, terms in the positive and negative feedback
terms are scaled to zero, (19) reduces to an additive
model. “rossberg also showed that shunting models do
not saturate when presented with arbitrarily large positive
inputs. They remain sensitive to the relative patterm in-
formation in (/, . . ., I,). Perhaps more important for
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ncurobiologists, Grossberg [13]. {14] observed that the
shunting model (19) is naturally gencralized by the cele-
brated Hodgkin-Huxley membranc equation:

av, ) » . .
co =W =V)gl+ (V= V) + (VT - V)
(20)
where V', V', and ¥~ arc respective passive, excitatory

(sodium Na*), and inhibitory (potassium K*) saturation
upper bounds with corresponding shunting conductances
g, g, and g, and where the constant capacitance ¢ >
0 scales time. The shunting model (19) becomes the mem-
brane equation 20) if V;, = x,, V" =0, V' = B, V™~ =
~-C, gl = A, & = S(x)+ 1, and & =L,i§m; +
i. -

Continuous bidirectional associative memories [28]-
[32] (BAM’s) arise when two (or more) ncural ficlds Fy
and Fy are connected in the forward direction, from Fy to
Fy, by an arbitrary n-by-p synaptic matrix M and con-
nected in the backward direction, from Fy to Fy, by the
p-by-n matrix N = M7, where M7 is the transpose of M.
BAM activations also possess Cohen-Grossberg dynam-
ics, and their extensions:

il

X;

_ai(xi)l:bi(xi) - j§l 5,()’;)'".,] (21)

I

yi —aj(yj)[bj(yj) - 'g:' si(xi)mi;] (22)

with corresponding Lyapunov function L:

= - ssm, + zj 5(6,) b.(6,) 6,

+ ZS S; (¢) bi(¢;) d;

where the functions b, and b; must be suitably constrained
to keep L bounded.

The quadratic form in L is bounded because the signal
functions §; and §; arc bounded. Boundedness of the in-
tegral terms requires additional technical hypotheses to
avoid pathologies as discussed by Cohen and Grossberg
[6]. For our purpose we simply assume the mtcgral terms
are bounded.

Al BAM results extend to any number of BAM-con-
nected fields. Complex topologies are possible and, in
theory, will equilibrate as rapidly as the two-layer BAM
system. The back-and forth flow of information in a BAM
facilitates natural large-scale optical implementations
{20}, [28].

The BAM model (21), (22) clearly reduces to the
Cohen-Grossberg model if both neural ficlds collapse into
one, Fy = Fy, and the constant matrix M is symmetric (M
= M"). Converscly, the BAM system, which is always
globally stable, can be abstractly viewed [30] as symme-
trizing an arbitrary matrix M. For if the two BAM ficlds
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are abstractly concatenated into a new ficld Fp, F; = Fy
U Fy, with zcro block diagonal synaptic matrix W that
contains M and M7 as respective upper and lower blocks,
then the BAM dynamical system (21), (22) 1s equivalent
to the autoassociative system (17).

The BAM system (21) includes additive and shunting
models. fa; = 1 =a, b, =x; — I, and b, = y; — J;
for rclatively constant inputs /; and J;, then an additive
BAM [30], [31] results:

X = —x + %as,'()’,')'",j + 1, (23)
= -yt 2 Si(xiymy; + J (24)

where again constants can be added or multiplied as de-
sired. More generally, if a; = —x;, ¢ = -y, b, =
(H/x) [ —x; + (B, — x))[S;(x;) + 1] — x;0; ], and b,
= (H/y) =y, + (B, = y)S;(y) +J;'] — y;J; ], then
a shunting BAM [30] results:

j,' = —x; + (B, - x,-)[S,- + Ii+] - X,‘[Z Sjm,l + Ii—:l
]
(25)

(26)

The shunting BAM (25), (26) reminds us that in general
distance-dependent competition occurs within fields Fy
and F,. Suppose the n-by-n matrix R and the p-by-p ma-
trix S describe the distance-dependent (R = R,S=S Ty
lateral inhibition within Fy and Fy, respectively. Then the
general BAM model (21), (22) must be augmented to a
competitive BAM [29}:

=
It

_ai(xi)[bi(xi) - >,_:S,(Y;)mi, - ZL‘: Sk(Xk)ru]

(27)

lid
ml/ - 2:SI(Yl)slj -
!

(28)

y = _aj()’j)[bj()'j) - 'ZS,(X:')

An adaptive bidirectional associative memory (ABAM)
is a globally stable dynamical system with activation dy-
namics described by (21), (22) or (27), (28) and synaptic
dynamics described by a first-order lcaming law. The
original ABAM ([30] restricted the choice of learning law
to the signal Hebb law (1). Signal Hebb ABAMs arc un-
conditionally globally stable, though limited in their abil-
ity to estimate continuous functions. Better, though more
costly, estimation can be gotten with higher order signal
Hebb ABAM's. For example, in autoassociative notation,
the sccond-order signal Hebb ABAM [32] is described by
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(29)-(31):
X = —ai(xi)[bc(xi) -2 S, (% )m;,
)
- ?, %: S;(x;) Si(xi)n, (29)
hy = =y + S,(x) S;(x) (30)
g = —ng + 5(x;) §(x) Si(x) (31)
with corresponding Lyapunov function L:
L=~{22LsSm; -2 X 2. 55,5
i i
+ ZS S5:(6;) b;(6;) do, + 1 ZZm
FPPIEA ()
i

The Lyapunov function remains bounded in the adap-
tive case. The new terms

122," and gZZgng‘
i

in (32) are boundcd because the solutions to (30) and (31)
are bounded since, ultimately, the signal functions §; are
bounded.

If a;(x;) > O0and §] > 0, and if (32) is differentiated
with respect to time, rearranged, and (29), (30) are used
to eliminate terms, then L strictly decreases along trajec-
tories, yielding asymptotic stability (and in gencral ex-
ponential convergence), since

Si(x) ., 1
z.:a(x) ‘2

~3EETa <
3

(33)

i

L=- DIDIN T
i

(34)

if any activation or synaptic velocity is nonzero. The strict
monotonicity assumption §; > 0 and (33) further imply
that L = 0 if and only if all parameters stop changing: x,
= my; = ng = 0 for all i, j, k. All like higher order
ABAM’s are globally stable.

The restriction to signal Hebbian leaming was relaxed
[32] to allow competitive leamning with (3) provided §; is
steep, and further relaxed to allow differential Hebbian
learning with (4) provided signal velocities and signal ac-
celerations agree in sign. A competitive ABAM (CA-
BAM) results from (27), (28) if lcaming is govermned by
the competitive leaming law (3) and if §; behaves essen-
tially as a 0-1 step function. For then, upon time differ-
entiation, the appropriate Lyapunov function L takes the
form

L=-2
i a; a,

Si(x) o 2:S,’(y,) "

- ZZm,/[S(x)S(y, m,]. (35)




s0

The trick is to climinate i, in (34) with the competitive
law (3) and cxploit the 0-1 threshold (steep-sigmoid) be-
havior of §,. Then the relevant product becomes non-

ncgative:

- m,)[S;S,

- m; ]

S/()’j) =0
S/()’j) = 1.

m,[S,S, — m,] = §,(S,

0.
(S:
Thus both winners and loscrs in Fy keep L decreasing
and ensure that every CABAM s globally stable.
CABAM’s are topologically equivalent to adaptive res-
onance theory (ART) systems [13]. The idea behind ART
systems is learn only if resonate. Resonance, though, is
simply joint stability at Fy and Fy mediated by the forward
connections M and the backward connections N. When N
= M T and activation dynamics are described by (27), (28),
ART models become CABAM models so long as leaming
is described by a globally stable lcarning law, in partic-
ular the competitive law (3) with steep signal function §;.
This is the case with the recent ART-2 model {5] since
the activation (short-term memory) dynamics of Fy and
F, are described by shunting equations and, in the nota-
tion of Carpenter and Grossberg, the leaming (long-term
memory) dynamics are described by CABAM-style com-
petitive leaming laws with threshold signal functions in

Fy:

2
- m;),

top-down (Fy ~ Fx):z; = g(y)pi — z] (36)

bottom-up (Fx — Fy):z; = g(y)pi — 51 (37)

where g is a threshold signal function and p; is the signal
pattern (itself involving complicated L’-norm computa-
tions) transmitted from Fy. Equation (36) says matrix Z
contains forward projections and its transpose Z contains
backward connections.

In contrast, the earlier binary ART-1 model [4] is not
extended by the CABAM model because Weber law struc-
ture is imposed on the forward ‘‘bottom-up’” synaptic
projections, and thus the forward and backward connec-
tion matrices arc not related by transposition. This in part
explains why binary inputs in ART-2 need not produce
ART-1 behavior. It also suggests that the ART-2 model
can in principle be similarly moaiiied by adding Weber
law structure to (36), producing an ART-2" model that is
not a CABAM.

These connections among unsupervised feedback dy-
namical systems arc summarized by the taxonomy in Fig.
2 of antificial neural networks (ANN’s) and placed in con-
text with unsupervised feedforward adaptive vector quan-
tizers and the extremely popular supervised feedforward
gradicent-descent networks:

The more general RABAM model s developed below.

Finally, for completeness, we state the form of ABAM
systems that adapt (and activate) with signal velocity in-
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formation by using the differential Hebb leaming law [33]:

X

na‘(x’)[b’("’) - sm, - ESma] (38)

Vi = “ai(y/'){bj()?) - ,Z Sim;; — Z,:S:”'u] (39)

and the further assumptions S, =S, §; = Sj, where in
general (40) can be loosened to only require that signal
velocities and accelerations tend to have the same sign (as
in clipped exponentials). The corresponding Lyapunov
function now includes a *‘kinetic energy’” term to account

for signal velocities:
L= -X X S5Sm; - 5 %5 35m,
LI ¢t J

+ 2 j $:(6,) b:(6) b,

4]
Yi
i Jo i

IV. StABILITY-CONVERGENCE DILEMMA AND THE
ABAM THEOREM

Stability and convergence arc equilibrium propertics.
Stability is equilibrium in a ncuronal field: (d/Jt)Fx =
0. Convergence is equilibrium in a synaptic web:
(d/dt)M = O. Global stability is joint stability and con-
vergence for all inputs and all nctwork parameters. Pat-
tern formation occurs across field Fy whea it stabilizes.
The stable signals across Fy make up the formed pattem.
Stability is trivial in a feedforward network.

Global stability is difficult to achieve in unsupervised
feedback networks. After all, most feedback systcms arc
unstablc. Global stability requires a dclicate dynamical
balance betwcen stability and convergence. Achicving
such a balance is arguably the central problem in analyz-
ing, and building, unsupervised feedback dynamical sys-
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tems. The chief difficulty stems from the dynamical asym-
metry between ncural and synaptic fluctuations. Neurons
fluctuate orders of magnitude faster than synapses: lcam-
ing is slow. In real ncural systems, ncuronal fluctation
may be at the millisecond level, while synaptic fluctuation
may be at the second or even minute level.

The stability-convergence dilemma arises from the
asymmetry in ncuronal and synaptic fluctuation rates. The
dilemma unfolds as follows. Neurons change faster than
synapses change. Patterns form when neurons stabilize,
when (d/dt)Fx = O and (d/dt)Fy = O. The slowly
varying synapses M try 1o lean these patterns. Since the
ncurons are stable for more than a synaptic moment, the
synapses begin to adapt to the neuronal pattcrms—leaming
begins. So (d/dt)Fy = O and (d/dt)F, = O imply
(d/dryM # O. Since there are numerous feedback paths
from the synapses to the neurons, the neurons tend to
change state. So (d/dr)M + O implies (d/d1)Fx + O
and (d/dt)Fy # O. Learning tends to undo the very sta-
bility patterns to be encoded, and hence the dilemma. In
summary, for two fields of neurons Fy and Fy connected
in the forward direction by M and in the backward direc-
tion by M7, the stability-convergence dilemma has four
parts, described as follows.

A. Stability-Convergence Dilemma

1) Asymmetry: Neurons in Fy and Fy fluctuate faster
than the synapses M.

d
2) Stability: Fx = 0 and — = Fy = O(pattemn forma-
tion).
R d d d
3) Learning: EFX = 0 and EFY =0 - ZM + 0.

d
—F .
o y# 0

The ABAM theorem {32] provides one resolution of the
stability-convergence dilemma. The adaptive resonance
concept provides another. Though as discussed in the pre-
vious section, the recent ART-2 instantiation of the con-
cept isa CABAM. The ABAM thcorem ensures the global
stability, the joint stability and convergence, of dynami-
cal systems with activation dynamics described by (21)
and (22) and that leam according to the signal Hebb leam-
ing law (1). The extensions to competitive and differential
Hebbian learning (and thus differential competitive learn-
ing) discussed above all require more assumptions than
learning with the signal Hebb law, which requires none.
Since the ABAM theorem is the starting point for the ran-
dom-process cxtension to the RABAM theorem below, we
review its statement and proof.

d d
4) Undoing: :_i;M + 0~ ;‘Fx # 0O and

B. ABAM Thecorem

Ever; signal Hebb BAM is asymptotically stable, where
the network dynamics are described by

x, = —a/(x)| b(x) - z:S/(-v/)m'/‘I (41)
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v, = —a,(3)]| b() - 2 5(x)m, (42)
m, = —m, + $,(x;) §,(») (43)
and ¢, > 0 and ¢; > 0, and §, and S, are bounded

monotone increasing (S, > 0 and §; > 0) signal func-
tions. At equilibrium, all activation and synaptic vcloci-
ties are zcro.

Proof. Consider the global Lyapunov function L:

= —EZssm + ZS $:(0,) b,(6;) db,

+ Z S S; (¢;) b;(¢;) d; Z Zm,-zj. (44)

Then time differentiation and collection of like terms gives

L= —Zs;xi[b,—Zs,m,.,}+ ZSy,[ Zsm]

- Z Z il

m;; [S S; — my] (45)
Then, using the positivity of a; and a;, the terms in braces
can be eliminated with the respective equations (41}-(43).
This proves that L is stn'ctly dccrcasing along trajectories:
Z y,

L—-—Z——x ZZm <0 (46)

i a;

for any activation or synapuc change. Since S > 0 and
S >0,L =0ifand only ifx; = y; = rn;; = O forall i
and j. Q.E.D.

The strictly inequality sign in (46) yields asymptotic
stability, which ensures that trajectories end in equilib-
rium points, not merely near them. Asymptotic stability
also ensures that the eigenvalues of the Jacobian matrix
of the system (41)-(43) have nonpositive real parts near
equilibria. A nondegenerate Hessian further ensures that
the real parts of the eigenvalues are negative. Then [16]
the nonlinear system (41)-(43) converges exponentially
quickly as if it were linear.

V. RANDOM ADAPTIVE BIDIRECTIONAL ASSOCIATIVE
MEMORIES

Random adaptive bidirectional associative memory
(RABAM) models are everywhere perturbed by Brownian
diffusions. The differential equations in (41)~(43) now be-
come stochastic differential equatioas, with random pro-
cesses as solutions. In the simplest case, Brownian dif-
fusions are simply added to deterministic differential
equations. In the more general case adopted here, every
activation and synaptic variable represents a separate sto-
chastic process. The stochastic differcntial equations re-
late the time cvolution of these stochastic processes.
Brownian diffusions, or ‘‘noise’” processes, are then
added to the stochastic differential equations. In principle
this Ito calculus approach need not preserve the chain rule
of deterministic differential calculus. The final section,
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though, discusscs why for RABAM models the classical
chain-rule relationships still hold.

Let B,. B,. and B, be Brownian motion (independent
Gaussian increment) processes [35], {41] perturbing the
ith ncuron in Fy, the jth neuron in Fy, and the synapsc m,,
respectively. The Brownian motions arc allowed to have
time-varying diffusion parameters. Then the diffusicn
RABAM is described by (47)-(49):

dx, = —a,(x)| b(x) — 2 S/(yz)"'u'J di + dB, (47)
s

dy, = ~aj(yj)lb,~(y,) - z? Si(xi)m,-j:l dr + dB, (48)

dm, = —m;di + 5;(x;) S;(y;) di + dB,. (49)

The signal Hebb diffusion law (49) can be replaced with
the competitive diffusion law

dm, = Sj(yj)[& — (50)

if §; is sufficiently stecp. Or it can be replaced with dif-
ferential Hebb or differential competitive diffusion laws if
tighter constraints are imposed. For simplicity, we shall
formulate the RABAM model in the signal Hebb case
only. The extensions to competitive and differential leam-
ing proceed exactly as the above extensions of the ABAM
theorem. All RABAM results, like all ABAM results, also
immediately extended to high-order systems of arbitrarily
high order.

The RABAM model can be restated in more familiar,
less rigorous, ‘‘noise notation.”" Intuitively independent
zero-mean noise is added to the ABAM model. The sto-
chastic differential equations then describe the time evo-
lution of network ‘‘signals plus noise.”” This implicitly
means that the noise processes are independent of the
nonlinear *“‘signal’’ processes. For emphasis, though, we
explictly make the weaker assumption that the noise pro-
cesses are uncorrelated with the *‘signal’’ processes. We
further assume that the noise processes have finite vari-
ances, though they may be time varying. Then the noise
RABAM model is described by the stochastic differential
equations

m)dt + dB;

£ = —a(x)| b(x) = 285(y)m, [ +n  (51)

I i
)-'/ = _u/(Y/) b/(y/) - ZFS,(X,)("U‘I + n; (52)
m, = —m,; + S(x)S,(y) +n, (53)
E(n) = E(n) = £(n,) =0 (54)
V(n) - o’n, < oo, a,‘, < o, o) <o (55)

Noise can be added within the general b, and b, terms,
perhaps reflecting random input signals. A scparate anal-
ysis [34] shows that additive input noisc can be accom-
modated for additive and shunting activation models. For
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additive activation modcls. such additive activation noise
can be included in the noisc tcrms #, and 7,

Will so much noise destabilize the system? So much
noisc with so much feedback would scem to promotc
chaos, especially since the network dimensions n and p
can be arbitrarily large. How can stable lcaming occur?

The RABAM theorem cnsurcs stochastic stability.
Nonlincar intcractions suppress noise and suppress it ex-
ponentially quickly. In effect, RABAM cquilibria are
ABAM cquilibria that randomly vibrate. The diffusion pa-
rameters, or the noisc variances, control the range of vi-
bration. Average RABAM behavior is just ABAM bchav-
ior. Since noise perturbations do not destroy equilibria,
the RABAM theorem says that unsupervised leaming is
structurally stable in the stochastic sensc. The result ap-
plies with equal force, though with less theoretical inter-
est, for unsupervised fcarning in feedforward networks.

The RABAM thcorem can be motivated with a simple
thought expcriment or, better, a few hand calculations.
Consider a discrete additive BAM with fixed matrix M.
Find its bipolar fixed points in the product space { —1,
1} x {—1,1}". Now add a small amount of zero-mean
noise to each memory clement m;;. Since a discrete BAM
signal function is a threshold function, it is unlikely that
more than very few ncurons, if any, change state differ-
ently during iterations than they did before. It is even less
likely that they will do so as n and p increase. The same
fixed points tend to be reached, and tend to persist once
reached. This corresponds to adding noise at the synaptic
level. Now repeat the computation, but also add zero-
mean noise to each neuron’s activation at each iteration.
Then repeat this computation, adding new noise to the
matrix M each time. This allows the synaptic noise pro-
cesses (o be ““lower’’ than the neuronal noise processes.
Again the threshold signal functions make it unlikely that
the signal patterns will change significantly, if at all, dur-
ing iterations or in equilibrium.

A. RABAM Theorem

The RABAM model (47)-(50), or (51)-(55) is globally
stable. If signal functions are strictly increasing and am-
plification functions a; and g, are strictly positive, the RA-
BAM model is asymptotically stable.

Proof. Thc ABAM Lyapunov function (44) is now a
random process. At cach time 7, L(r) is a random van-
able. We conjecture that the expected ABAM Lyapunov
function E(L) is a Lyapunov function for the RABAM sys-
tem, where the expectation is with respect to all random
parameters:

E(L) = S Ce [ Lp(X. Y, M)dXdYdM. (56)
(Recall that cach activation and synaptic parameter rep-
resents a random process separate from the random pro-
cess got simply by adding noisc to a detcrministic van-
able.)
The proof strategy is to replace the time derivative of
the expectation with the expectation of the time derivative
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of the ABAM Lyapunov function, which we calculated
above. Technically we need to assume suflicient smooth
ness conditions on the RABAM model to bring the time
derivative inside the multiple integrals in (56). This as-
sumption adds little burden. Then

E(L) = E(L) and by (45)

e,

+>_;S’yl[ ZSm]

i

i

-—EZmu[ ~m, +SS]}
=E{—Z$ai[bi~2 5;'”"‘1]
2
ZS’ [ ZSm]

~ LN [-m + s.-sjl’}

7elosa- 3o}
sl 35n

- BT E{nl-m, + 551}

i

(57)

upon eliminating the activation and synaptic velocities in
(57) with the RABAM dynamical equations (51)-(53)

= E[Lagam] + Z E(n)E{S'[ Zsm B

+ 2 E(ny) E{s;(b, -2 s,m,,B

- z': Z E(n;) E[ —m; + S5.5] (58)

by the uncorrclatedness (independence) of the *‘signal’”
and additive noise terms in the RABAM model, and by
the facts that §] and §; are nonncgative functions of x; and
y; respectively, and a; and a; are nonnegative essentially

)
arbitrary functions (so §; = a; and §; = a; possible)

= E[ LARI\M]

0 or [‘(L) < 0 along trajectorics
Q.E.D.

by (54). So E(L) <
according as Lagam < 0 0 Lagam < 0.

VI. NoOISE-SATURATION DiLemMma aND THE RABAM
Noi1se SUPPRESSION THEOREM

How much do RABAM trajectories and cquilibria vi-
brate? To answer this question we need to examine the
second-order behavior of the RABAM model. This be-
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havior depends fundamentally on the variances of the ad-
ditive noise processes. Obscrve that the zero-mean as-
sumption (54) implies that the time-varying “‘variances”’
ol oiz. and a2 are lhc rt.spcunvc instantaneous mean-
squared * noiscs I;(n ), F(n ), .mdl'(n,,) since in gen-
cral V(x) = E(x?) — E¥x).

Observed RABAM sccond-order behavior consists of
the observed instantancous mean-squared velocities
F(x ), E(yl) and l;(m ). The mean-squared velocities
measure the magnitude o( instantancous RABAM change.
They are at least as large as the underlying instantancous
‘““variances’’ of the activation velocity and synaptic ve-
locity processes, since, for example

E(x}) = E(x}) ~ EX%) = V(&) (59)

Intuitively the mean-squared velocities should depend
on the instantancous ‘‘variances’’ of the noise processes
in (51)-(53). The more the noise processes hop about their
means, the greater the potential for the activations and
synapses to change state. But this intuition seems to run
counter to the structural stability established by the RA-
BAM theorem. Surely, it seems, if the magnitudes of the
noise fluctuations grow arbitrarily large, there comes a
point—and perhaps a point quickly reached in the midst
of massive noisy fcedback—where the RABAM system
transitions from stability to instability.

The RABAM noise suppression theorem guaraatees that
no noise processes can destabilize a RABAM if the noise
processes have finite instantaneous variances. (Cauchy
noise, for example, in theory could destabilize a RABAM
since it has infinite variance. In practice, though, even
Cauchy vanance is finite, and so it will never destabilize
a RABAM.) Preliminary simulations [43], where noise
fluctuations are many orders of magnitude greater than
activation and synaptic fluctuations, have confirmed this
surprising prediction. In some sense noise cannot beat
RABAM stability. Moreover, the RABAM noise suppres-
sion theorem ensures that noise will be ‘‘quenched,’” to
use Grossberg's term [13], exponentially quickly in most
cases.

To prove the RABAM noise suppression theorem, we
must make explicit how RABAM instantaneous mean-
squared velocities depend on the underlying instantaneous
noisc variances. The following lemma grounds the intui-
tion that observed second-order behavior—the instanta-
neous mean-squared velocities—involves at least as much
fluctuation as is found in the noise itsclf.

Lemma:

E(i]) = ol E(¥}) = of, E(m},) > 0,2/, (60)

J

Proof. All three incqualitics are proved by squaring
both sides of the RABAM cquations (51)-(53). taking ex-
pectations, and using (54) and the fact that the noise is
uncorrelated with the additive nonlinear *“signal’” terms.

Q.E.D.

It 15 not true that the squared velocity processes are
never less than the squared noise processes at every in-
stant. It is only true on average at every instant,
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Grossberg™s noise-saturation dilenvma [13] motivates
the use of the term ‘‘noise suppression’ in the RABAM
corollary below. The noise-saturation dilemma asks how
ncurons can have an effective infinite dynamical range
when they operate between upper and lower bounds and
yet not treat snudl input sigoals as noise: I the x, are
sensitive to large inputs, then why do not small inputs get
tost in intemal system noisc? If the x; are seasitive to small
inputs, then why do they not all saturate at their maximum
values in responsce o large inputs?™” [14] This vexing and
ubiquitous dilemma, it even confronts the salesperson who
trys to balance her presentation between “‘litde™ and
*‘big"’ customers, is the supreme motivator behind Gross-
berg’s shuating-model perspective of ncural nctworks.

Grossberg resolves the saturation half of the dilemma
by showing [13], as mentioned above, that shunting
models remain sensitive to relative pattern information
over a wide range of inputs. He also shows that additive
models quickly saturate to upper bounds for large inputs.
Indeed this saturation invariance result is arguably Gross-
berg’s greatest achicvement. Besides giving information-
processing insights into the global dynamics of Hodgkin-
Huxley type networks, it also drives Grossberg’s concep-
tion and implementation of ART behavior, and is at the
heart of his recent vision thcory. On the other hand, as
Carver Mead and other ncural VLSI designers have ob-
served, it is well known that a simple logarithmic trans-
duction of local input light intensity into electric potential
in the visual system achieves in one stroke both sensitivity
to input light intensities over many orders of magaitude
and “*discounts the illuminant’” [14] by equating voltage
differences to logarithms of intensity ratios.

Grossberg's resolution of the noise half of the noise-
saturation dilemma is far less satisfactory. Grossberg {13]
argues that noisy patterns are uniform input patterns and
that, for a particular small threshold value, uniform noise
is ‘‘suppressed’’ by all ncurons in the field shutting off.
Besides the dependence on a specific noise threshold, this
argument is objectionable on at least two counts. First,
noise permeates all parameters and all signals and cer-
tainly need not be uniform. Grossberg admits this in his
above description of the noise-saturation dilemma when
he asks why small inputs do not **get lost in intemal sys-
tem noise.”” System notsc makes everything “‘jiggle,’” in-
cluding relative input pattern values. This is the noise
modcled by the additive noisc processes in the RABAM
equations (51)-(53) or, more realistically, by the additive
diffusion processes in the diffusion RABAM equations
(47)-(49).

Second, shutting off neurons o suppress notse secms
akin to curing the paticnt by killing him. The goal is to
continue “‘computing”” as accurately as possible no mat-
ter how noisy the environment. Background noise can be
high in feedback systems where noise can multiply by re-
circulating. In fairness, Grossberg {14] argues that special
classes of signal functions, cspecially sigmoid signal
functions, help quench patiern noisc by contrast-enhanc
g input signals. Signal function nonlincarities surcly
help suppress this special occurrence of noisc. But what
about synaptic noisc? What about joint synaptic and ac-
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tivation noisc? What about noise compounded by fced-
back? How do we know such pervasive noise will not pre-
vent an ART system from adaptively resonating, or ruin
an adaptive-resonance equilibrium once achicved?

The RABAM noise suppression theorem is an alterna-
tive resolution of the noisc half of the noisc-saturation
dilemma. [t guarantecs that sccond-order behavior in RA-
BAM systems is as good as it can be: meaa-square veloc-
itics decrcasc exponentially quickly to their lower bounds.
As the above femma shows, these lower bounds arc just
the underlying driving noisc variances. Thus the observed
fluctuations, the mean-squared velocitics, track the unob-
served noise fluctuations. Unaided fecdback intuitions
might easily lead to the prediction that, in light of the
lemma, mcan-squared velocitics may tend toward infin-
ity, especially for widely fluctuating noisc processes.

A. RABAM Noise Suppression Theorem

For strictly increasing signal functions §; and S, posi-
tive amplification functions «,, and nondegencrate Hes-
sian conditions: as thc RABAM system (51)-(55) con-
verges exponentially quickly, mean-squared activation
and synaptic parameters decrease to their lower bounds
cxponentially quickly:

E(i7) Lo}, E(y}) Ll (61)

Proof. The proof uses the asymptotic convergence es-
tablished in the above RABAM theorem for the monoton-
icity and positivity assumptions and the lower bound on
mean-square velocities established in the lemma (60).
Then

E(L)

E(m}) 1 ol

E(L)
E Z Sixi(n; — ;)

i a;

+

1l

D Siyi(n — 3;)
j

q;

= 2 X in(ny ~ tny)

by using the positivity of the amplification functions and
(51)-(53) to eliminate the terms in braces in (57) in the
proof of the RABAM theorem
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by using (51)-(53) again to eliminate activation and syn-
aptic velocitic “n the sccond cxpectation above, rearrang-
ing, and, as in the proof of thc RABAM theorem, using
the uncorrelatedness of noise and “*signal™” terms in (51)~
(53) as discussed above to obtain (59)
=-2E
2

s S
—‘(x?—n,.’)l—'i_]r; —I()"f—nf)]
a; ) J ‘(II )

(62)

~ B E(EG) - o))

by the zero-mean noise assumption (54) and rearrange-
ment. The lemma ensures that the double sum 1s nonneg-
ative. Thc RABAM thcorem cstablishes that the Lyapu-
nov function E(L) strictly decreases along trajectories,
and thus trajectories end at equilibrium points and arrive
there exponentially quickly. This, together with the pos-
itivity (and well behavedness [34]) of the weight ratios
S'/a, yiclds the equilibrium conditions:

E(x}) =0}, E(y]) =9¢}, E(i})=0; (63)

This implies (62). Q.E.D.

The RABAM noise suppression generalizes the equilib-
rium conditions obtained in the ABAM theorem in the
asymptotic-convergence case. For if the instantaneous
“‘variances’’ in (63) are zero, then [38] the squared ve-
locities, and thus the velocities, are zero almost every-
where. The zero-variance case is the deterministic case.
The sigma-algebra of the probability space is degenerate;
it only contains the whole space and the null set. Thus the
activation and synaptic velocities are zero everywhere, as
in the strict ABAM case. Also note that throughout the
proofs of the RABAM theorem and the RABAM noise
suppression theorem, the synaptic terms are easier to work
with, and the results are ‘‘cleaner,’’” because they do not
possess nonlinear signal and amplification terms. We re-
call again that the above two theorems are also valid for
suitably randomized competitive, differential Hebb, and
differential competitive learning laws under appropriate
conditions.

VII. RABAM ANNEALING AND THE IT0-
STRATONOVICH STOCHASTIC CALCULUS

Gradient systems are globally stable. The above theo-
rems arc an extension of this general Lyapunov fact. For
example, Cohen and Grossberg [6] showed that their sym-
metric nonlcarning autoassociative system can be written
in pseudogradicnt form for monotone increasing signal
functions and positive amplification functions.

Geman and Hwang [8] recently showed that stochastic
gradient systems with scaled additive Brownian diffusions
(noise) perform simulated annealing in a weak sense. The
gradicnt is formed from a cost function 1o be secarched by
scaled random hill climbing. If the noise is initially scaled
high enough (to a physically unrealizable size), then grad-
vally decreasing the nonnegative ‘‘temperature’ T(r)
scaling factor can bounce the system state out of local
minima and trap it in global minima. The convergence,
though, must proceed exponentially slowly and is only

€Yoy o ,
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gous to the convergence in distribution found in central
limit theorems). The result is not true’ for convergence
with probability one or even convergence probability.
There 1s stll some probability that the system state will
bounce out of global or near-global minima as **cooling””
finishes.

We now extend the RABAM thcorem and RABAM
noisc suppression theorem to include simulated anncaling
in the gencral Geman-Hwang sense. For this we intro-
duce the activation *‘temperatures’ or annealing sched-
ules 7;(1) and T;(¢) and the synaptic schedules T, (7). The
temperatures are nonnegative deterministic functions. So
they can be brought outside all expectations in proofs.
The RABAM annealing model is more general than the
Geman-Hwang gradient model, and vastly more general
than popular additive-activation annecaling models, be-
cause leaming is permitted and because leaming 100 can
be annealed, although perhaps at a different rate than ac-
tivation anncaling. The RABAM anneéaling model is de-
fined by scaling the diffusion differentials in (47)-(49)
with the square root of the corresponding annealing
schedules or, in the noise RABAM, by replacing (51)-
(53) with (64)-(66):

X;

—a,-[b,- - ZS,mq} + \/—fini (64)

where again (67) can be replaced with the other unsuper-
vised leaming laws discussed above with appropriate ad-
ditional constraints.

A. RABAM Annealing Theorem

The RABAM annealing model is globally stable, and
asymptotically stable for monotonc increasing signal
functions and positive amplification functions, in which
case the mean-squared activation and synaptic velocitics
decrease to their temperature-scaled instantancous *‘vari-
ances’’ exponentially fast:

E(x)) L Tio], E(y) 1T}, E(i])l T,
(67)

Proof. The proof largely duplicates the proofs of the
RABAM theorem and RABAM noisc suppression theo-
rem. Again E(L) is a sufficiently smooth Lyapunov func-
tion that allows time differentiation of the integrand. When
the diffusion or noise RABAM anncaling equations arc
used to climinate activation and synaptic velocities in the
time-differentiated Lyapunov function, the resulting tem-
perature functions that occur can be factored outside all
expectations. The nonnegativity of the temperature func-
tions keeps them from affecting the structure of expanded
time denvative of E(L). The random weight functions
§'/a are assumed sufliciently well behaved 1o keep the
expectations in which they occur nonnegative. The above
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the mean-squared velocity E(i',-z) is bounded below by
T,0l. Then, (62) is gencralized to

E(Ly= -2 E ;Sf(fc,-’ - 'l}n,’)]

!
-

E| = (3} = T;n))

N

- 2 L (E(il) - T,0}). (68)

Y
J

Q.E.D.

The RABAM anncaling theorem is a nonlinear and con-
tinuous gencralization of Boltzmann machine leaming
{40], provided lcaming is Hebbian and very slow. The
Boltzmann machinc uses discrete symmetric additive au-
toassociative dynamics. Binary ncurons are annealed dur-
ing periods of Hebbian and anti-Hebbian leaming. Here
Hebbian leaming corresponds to (66) with T;;(1) = 0 for
all 1. Anti-Hebbian lcaming further replaces the Hebb
product S;§; in (66) with the ncgative product ~§; ;. Anti-
Hebbian leaming (during *‘free-running™ training (40])
can in principle destabilize a RABAM system. This is less
likely to occur, though, the slower the anti-Hebbian leamn-
ing. (The activation terms in the time derivative of E(L)
stay negative and can outweigh the possibly positive anti-
Hebbian terms, even if learning is fast.) Incidental insta-
bility perhaps is not even a problem in this phase of an-
nealing, since the intention is to undo some of the leam-
ing in the ‘‘environmental’’ annealing phase. The

: fundamental distinction between unsupervised RABAM
learning and temperature-supervised annealing leaming is
how noise is treated. Simulated annealing systems search
or leam with noise. Unsupervised RABAM systems leam
despite noise. During “‘cooling,’” the continuous anneal-
ing schedules define the flow of RABAM equilibria in the
product state space of continuous nonlinear random pro-
cesses. Equation (67) implies that no finite temperature
value, however large, can destabilize a RABAM.

Finally, the proofs of the above RABAM theorems re-
peatedly use the familiar chain rule of differential calcu-
lus. In gencral, the chain rule does not apply to systems
of nonlincar stochastic differential cquations, at least not
in the general case where each nonlinear parameter is it-
self a stochastic process. This is the gencral setting for
the Ito calculus. One exception is the related Stratonovich
calculus, which defines a stochastic integral (an integral
defined with respect to a random mcasure [41] with as
lightly different pantitioning of the time interval. The Stra-
tonovich calculus includes the classicat chain rule, though
in gencral at the expensc of possessing non-Markovian
solution processes. _ -

Maybeck [35] shows that. with probability one, the lto
stochastic differential cquals the Stratonovich stochastic
differential plus a term involving the nonlincar random
scaling factor on the underlying B.mw.mun diflusion. The
two differentials and com:spond.mg' intcgrals are cqual
when this cxtra term is zcro. Th.u is fortunatcly ulwa.y_\
true for RABAM systems sincc noise terms are scaled with

constants of sequences of constants (dcterministic an-
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ncaling schedules). The extra term involves the derivative
of this constant with respect to the corresponding random
activation or synapsc. Thus RABAM modcls cnjoy the
best of both stochastic-calculus worlds. They maintain the
familiar chain rule of Stratonovich stochastic dynamical
systems and inherit the better-explored propertics of Ito
stochastic dynamical systems. For instance, all RABAM
solution processcs are Markov processes. This promiscs
a new approach to nonlincar stochastic optimat estimation
and control.

VIil. ConcLusions

The RABAM model unifics many popular feedforward
and feedback unsupervised leaming systems and extends
them to the more realistic, and more complex, random
process domain. Unsupervised leaming is structurally sta-
blc for wide families of nonlinear fcedback dynamical
systems. This holds for the popular signal Hebb and com-
peutive lcarning feedback systems under quitc general
conditions. It holds to a lesser extent for the largely uncx-
plored signal-velocity leaming fecdback systems that
adapt with differential Hebb or differential competitive
laws. Pulse-coded [ 10}, [11] signal functions augment the
class of feedback systems that can stably learn with the
differential Hebb and differential competitive laws, since
in this case they give back, respectively, signal Hebb and
competitive learning behavior much of the time. The
pulse-coding framework also promises new enginecring
approaches to implementing adaptive networks, perhaps
with sinusoidal techniques, as well as suggesting new
moles for signal-velocity synaptic mechanisms in real
neural systems. The feedback in these stable dynamical
systems can always be eliminated to produce unsuper-
vised feedforward systems that stably leam with Hebbian,
competilive, or signal-velocity leaming laws.

The stability of RABAM models yields the structural
stability of ABAM models. From an engineering perspec-
tive, this means we can more confidently build large-scale
ABAM networks with electrical, optical, electrooptic, and
perhaps other (molecular, fluid, plasma, polymer, etc.)
devices.

For the ncurobiologist, the structural stability of ABAM
models suggests that at least some of the consistent criti-
cism that acural models are *‘unrealistic™” is unfounded.
The many intricate ncuronal and molecular propertics that
the ncurobiologist studies, and finds missing in ncural
network models, arec modeled in RABAM systems as ran-
dom unmodcled cffects. The RABAM noise suppression
thecorem says these unmodeled effects arc ignored by the
network’s global computations almost as quickly as they
are cncountered. Like many quantum-level effects in elec-
trical devices, these unmodeled effects simply do not af-
fect the structure of global network computations—so long
as they are net random effects.

How plausible is this? Some unmodeled cffects of
course depend on ncuronal and synaptic bchavior and so
arc not accurately modeled as independent noisc pro-
cesses, though perhaps central-limit (Gaussian) cffects
cmerge {rom the interaction of many such processes.
Many correlated effects can also be incomorated as slowly
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varying parameters in the sigaal™ part of the RABAM

modcl.
In gencral, the sheer number (sample size) of unmod-

cled effects suggests a Brownian approximation. To the
extent that the unmodcled synaptic and ncuronal cffects
involve many independently interacting continuous phe-
nomena, the act result is a Brownian diffusion, as as-
sumed by RABAM modcls. This is because finite-vari-
ance continuous processes with independeat incremeants
in time have Gaussian increments [35], and hence give
rise to a Brownian diffusion.
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So far as the laws of mathematics refer to reality, they are not certain. And so far as

they are certain, they do not refer to reality.
Albert Einstein

Fuzziness is explored as an alternative to randomaess for describing uncertainty. The new sets-as-points
geometnc view of fuzzy sets is developed. This view identifies a fuzzy set with a point in a unit
hypercube and a nonfuzzy set with a vertex.of the cube. Paradoxes of two-valued logic and set theory,
such as Russell’s paradox, correspond to the midpoint of the fuzzy cube. The fundamental questions of
fuzzy theory—How fuzzy is a fuzzy set? How much is one fuzzy set a subset of another?—are answered
geometrically with the Fuzzy Entropy Theorem, the Fuxzy Subsethood Theorem, and the Entropy-
Subscthood Theorem. A new geometric proofl of the Subscthood Theorem is given, a corollary of which
is that the apparently probabilistic relative frequency n /N turns out to be the deterministic subsethood
S(X, A), the degree to which ihe sample space X is contained in its subset A. So the frequency of
successful tnals is viewed as the degree to which all trials are successful. Recent Bayesian polemics
against fuzzy theory are examined in light of the new sets-as-points theorems.

INDEX TERMS: Probability Theory, fuzzy set theory, fuzzy subsethood, geometry of fuzzy sets.

1. FUZZINESS IN A PROBABILISTIC WORLD

Is uncertainty the same as randomness? If we are not sure about something, is it
only up to chance? Do the notions of likelihood and probability exhaust our
notions of uncertainty?

Many people, trained in probability and statistics, believe so. Some even say so,
and say so loudly. These voices are often heard in the Bayesian camp of statistics,
where probability is viewed, not as a frequency or other objective testable
quantity, but as a subjective state of knowledge.

Bayesian physicist E. T. Jaynes says® that

any method of inference in which we represent degrees of plausibility by real numbers, is necessanily
cither equivalent to Laplace’s [probability], or tnconsistent.

He claims physicist R. T. Cox?® has proven this as a theorem, a claim we examine

below.
More recently, Bayesian statistician Dennis Lindley'? issued an explicit

challenge:
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probability is the o.ly sensible description of uncertainty and is adequate for all problems involving
uncertainty. All other methods are inadequate.

Lindley directs his challenge in large part at fuzzy theory, the theory that all
things admit degrees, but admit them deterministically. This article accepts the
probabilist’s challenge from the fuzzy viewpoint—admitting but ignoring other
approaches to uncertainty, such as Dempster-Shafer belief function theory—by
defending fuzziness from new geometric first principles and by questioning the
reasonableness and the axiomatic status of randomness. The new view is the sets-
as-points view'! of fuzzy sets: A {uzzy set is a point in a unit hypercube and a
nonfuzzy set is a corner of the hypercube.

There are conceptual and theoretical differences between randomness and
fuzziness. Some can be illustrated with examples. Some can be proven with
theorems, as we show below.

There are also many similarities. The chief, but superficial, similarity is that both
systems describe uncertainty with numbers in the unit iatecrval [0,1]. This
ulimately means that both systems describe uncertainty numerically. The struc-
tural similarity is that both systems combine sets and propositions associatively,
commutatively, and distributively. The key distinction concerns how the systems
deal simultaneously with a thing A and its opposite A°.

Questions raise doubt, and doubt suggests room for change. So to commence
‘the exposition, consider the following two questions, one fuzzy and the other
probabilistic:

i) Is it always and everywhere true that An A= ?
it) Who can derive the conditional probability operator

P(AnB),

P8I ==50

The second question may appear less fundamental than the first question, which
asks whether fuzziness exists. The Entropy-Subsethood Theorem below shows that
the first and second questions are connected: How fuzzy a fuzzy set A is can be
measured by how much the superset AU A is a subset of its own subset AN A, a
paradoxical relationship unique to fuzzy theory. In contrast, in probability theory
this state of affairs is impossible (has zero probability): P(AmA‘[AuA’;———
P(Z| X)=0, where X is the sample space or “sure event” and the empty set {J is
the “impossible event”.

The conditioning or subsethood in the second question is at the heart of
Bayesian probabilistic systems. The absence of a first-principles derivation of
P(BIA) in itself may be acceptable. One simply agrees to take the ratio
relationship as an axiom. The problem is that the new sets-as-points view of fuzzy
sets derives its conditioning operator as a theorem from first principles. The
history of science suggests that systems that hold theorems as axioms continue to
evolve.

The first question asks whether the law of noncontradiction—one of Aristotle’s
three “laws of thought™ along with the laws of excluded middle, AU A= X, and
identity, 4 = 4—can be violated. Set fuzziness occurs when, and only when, it is
violated. Classical logic and set theory assume that the law of noncontradiction,
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and equivalently the law of excluded middle, is never violated. That is what makes
the classical theory black or white. Fuzziness begins where Western logic ends.

2. RANDOMNESS VS. AMBIGUITY: WHETHER VS. HOW MUCH

Fuzziness describes event ambiguity. It measures the degree to which an event
occurs, not whether it occurs. Randomness describes the uncertainty of event
occurrence. An event occurs or not, and you can bet on it. At issue is the nature of
the occurring event: whether it itself is uncertain in any way, in particular whether
it can be unambiguously distinguished from its opposite.

Whether an event occurs i1s “random™ To what degree it occurs is fuzzy.
Whether an ambiguous event occurs—as when we say there is 20 %, chance of light
rain tomorrow—involves compound uncertainties, the probability of a fuzzy event.

In practice we regularly apply probabilities to fuzzy events: small errors, satisfied
customers, A students, safe investments, developing countries, noisy signals, spiking
neurons, dying cells, charged particles, nimbus clouds, planetary atmospheres,
galactic clusters. We understand that, at least around the edges, some satisfied
customers can be somewhat unsatisfied, some A students might equally be B+
students, some stars are as much in a galactic cluster as out of it. Events can more
or less smoothly transition to their opposites, making classification hard near the
midpoint of the transition. But in theory—in formal descriptions and in text-
books—the events and their opposites are black and white. A hill is a mountain if
it is at least x meters tall, not a mountain if it is one micron less than x in height.
Every molecule in the universe either is or is not a pencil molecule, even those
hovering above the pencil’s surface.

Consider some further examples. The probability that this essay gets published
is one thing. The degree to which it gets published is another. The essay may be
edited in hundreds of ways. Or the essay may be marred with typographical
errors, and so on.

Question: Does quantum mechanics deal with the probability that an unambi-
guous electron occupies spacetime points? Or does it deal with the degree to which
an electron, or an electron smear, occurs at spacetime points? Does [¢[*dV
measure the probability that a random-point electron occurs in infinitesimal
volume dV? Or'? does it measure the degree to which a deterministic electron
cloud occurs in dV? Different interpretation, different universe. Perhaps ¢ven
existence admits degrees.

Suppose there is 509 chance that there is an apple in the refrigerator (electron
in a cell'?). That is one state of affairs, perhaps arrived at through frequency
calculations or a Bayesian state of knowledge. Now suppose there is half an apple
in the refrigerator. That is another state of affairs. Both states of affairs are
superficially equivalent in terms of their numerical uncertainty. Yet physically,
ontologically, they are distinct. One is “random”, the other fuzzy.

If events are assumed unambiguous, as in balls-in-urns experiments, there is no
fuzziness. Only randomness remains. But when discussing the physical universe,
every assertion of event ambiguity or nonambiguity 1s an empirical hypothesis.
This is habitually overlooked when applying probability theory. Years of such
oversight are perhaps responsible for the deeply entrenched sentiment that
uncertainty is randomness, and randomness alone. The silent assumption of
universal nonambiguity is akin to the pre-relativistic assumption of an uncurved
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Figure 1 Incxact oval. Which statement beticr describes the situation: (a) “It is probably an ellipse™ or
(b) "It is a fuzzy ellipse™ '

universe. ANA°=( is the “parallel postulate™ of classical set theory and logic,
indeed of Western thought.

If fuzziness is a unique type of uncertainty, if fuzziness exists, the physical
consequences are universal, and the sociological consequence is startling: scientists,
" especially physicists, have overlooked an entire mode of reality.

Fuzziness is a type of deterministic uncertainty. Ambiguity is a property of
physical phenomena. Unlike fuzziness, probability dissipates with increasing
information. After the fact “randomness” looks like fiction. (This is especially
awkward since in general the laws of science are time reversible, invariant if time ¢
is replaced with time —t. Where does the randomness go?) Yet there is as much
ambiguity after a sample-space experiment as before. Increasing information tends
to specify the degrees of occurrence. Even if science had run its course and all ti:e
facts were in, a platypus would remain only roughly a mammal, a large hill only
roughly a mountain, an oval squiggle only roughly an ellipse. Fuzziness does not
require that God play dice.

Consider the inexact oval in Figure 1. Does it make more sense to say that the
oval is probably a circle (or ellipse), or that it is a fuzzy ellipse? There is nothing
random about the matter. The situation is deterministic: All the facts are in. Yet
uncertainty remains. The uncertainty is due to the simultaneous occurrence of two
properties: to some extent the inexact oval is an ellipse and to some extent it is
not an ellipse.

More formally, is m (x), the degree to which element x belongs to fuzzy set A4,
simply the probability that x is in 4? Is m(x)=Prob{xe A} true? Cardinality-
wise, sample spaces cannot be too big. Else a positive measure cannot be both
countably additive and finite, and thus a probability measure. The space of all
possible oval figures is too big, since there are more of these than real numbers.
Almost all sets are too big to define probabilities, yet fuzzy sets can always be
defined.

Prob{xe A} might be interpreted as the probability of a fuzzy event, the
probability that element x belongs to fuzzy set 4 with degree m (x). Rarely indeed
then should the equality Prob {x€ A} =m (x) occur.




FUZZINESS VS. PROBABILITY 215

But this is not the intended interpretation of the assertion Prob {xe A} =m (x).
Instead set A4 is not fuzzy. The element x either is or is not an element of set A.
We do uot know which, and we describe this uncertainty with the probability
Prob {x€ A}. But then surely Prob {xe€ A}#m(x). For example, Prob {xe€ A A}
=0 and Prob{xeAuA}=1 for every nonfuzzy set A. Yet m,, {(x)>0 and
m,, «(x) <1 for every properly fuzzy set A.

Probability theory is a chapter in the book of finite measure theory. Many
probabilists do not care for this classification, but they fall back upon it when
defining terms.” How reasonable is it to belicve that finite measure theory—
ultimately, the summing of nonnegative numbers to unity—exhaustively describes
the (quantum-mechanical) universe? Does it really describe any thing?

Surely from time to time every probabilist wonders whether probability
describes anything real. From Democritus to Einstein, there has been the suspicion
that, as David Hume® put it,

though there be no such thing as chance in the world, our ignorance of the real cause of any event has
the samec inflluence on the understanding and begets a like species of belief.

When we model noisy processes by extending differential equations to stochastic
differential equations, it seems we introduce the formalism only as a working
approximation to several underlying unspecified processes, processes that presum-
ably obey deterministic differential equations. In this sense conditional expec-
tations and martingale techniques might seem reasonably applied, for example, to
stock options or commodity futures phenomena, where the behavior involved
consists of aggregates of aggregates of aggregates. The same techniques seem less
reasonably applied to quarks, leptons, and void.

3. THE UNIVERSE AS A FUZZY SET

The world, as Wittgenstein'! observed, is everything that is the case. In this spirit
we can summarize the ontological case for fuzziness: The universe consists of all
subsets of the universe. The only subsets of the universe that are not fuzzy are the
constructs of classical mathematics. All other sets—sets of particles, cells, tissues,
people, ideas, galaxies—in principal contain elements to different degrees. Their
membership is partial, graded, inexact, ambiguous, or uncertain.

The same universal circumstance holds at the level of logic and truth. The only
logically true or false statements—statements S with truth value «S) in {0, 1 }—are
tautologies, theorems, and contradictions. If § is any statement about the universe,
an empirical statement, then 0<¢(S)<1 holds by the canons of scientific method
and by the lack of a single demonstrated factual statement S with #{S)=1 or
t(S) =0. That is the thrust of Einstein’s quote above.

Fuzziness arises from the ambiguity between a thing A and its opposite A°. If we
do not know A with certainty, we do not know A with certainty either. Else by
double negation we would know A with certainty. This produces nondegenerate
overlap: An A # (J, which breaks the “law of noncontradiction”. Equivalently, this
also produces nondegenerate underlap:'® AU A°# X, which breaks the “law of
excluded middle”. Here X is the ground set or universe of discourse. Recall* that
these laws are never broken in probabilistic or stochastic logics—P(A4 and not-
A)=0 and P(A or not-A)=1—even though they are broken with many, perhaps
most, human utterances. Nor are probability measures allowed to take such fuzzy
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sets as arguments. The sets must first be quantized, rounded off, or defuzzified to
the ncarest nonfuzzy set. So the question arises: How mathematically natural are
fuzzy sets?

4. THE GEOMETRY OF FUZZY SETS: SETS AS POINTS

It helps to see the geometry of fuzzy sets when discussing fuzziness. To date this
visual property has been overlooked. The emphasis has instead been on interpret-
ing fuzzy sets as membership functions, mappings m, from domain X to range
(0, 1]. But functions are hard to visualize. Membership functions are often pictured
as two-dimensional graphs, with the domain X misleadingly represented as one-
dimensional. The geometry of fuzzy sets involves both the domain X ={x,,...,x,}
and the range [0,1] of mappings m X —[0,1]. The geometry of fuzzy sets is a
great aid in understanding fuzziness, defining fuzzy concepts, and proving fuzzy
theorems. Visualizing this geometry may by itself be the most powerful argument
for fuzziness.

The geometry of fuzzy sets is revealed by asking an odd question: What does
the fuzzy power set F(2%), the set of all fuzzy subsets of X, look like? Answer: A
cube. What does a fuzzy set look like? A point in a cube. The set of all fuzzy
subsets is the unit hypercube ["=[0,1]". A fuzzy set is any point'! in the cube I".
So (X, I") is the fundamental measurable space of (finite) fuzzy theory. The theory
of fuzzy sets—more accurately, the theory of continuous sets—can be taught on a
Rubik’s cube. _

Vertices of the cube [* are nonfuzzy sets. So the ordinary power set 2%, the set
of all 2" nonfuzzy subsets of X, is the Boolean n-cube B 2*¥ = B". Fuzzy sets fill in
the lattice B" to produce the solid cube I F(2*)=/".

Consider the set of two elements X ={x,,x,}. The nonfuzzy power set 2¥
contains four sets: 2% ={@¥, X, {x,}, {x;}}. These four sets correspond respectively
to the four bit vectors (00}, (11), (10), and (01). The Is and Os indicate the
presence or absence of the ith element x; in the subset. More abstractly, each
subset A s uniquely defined by one of the two-valued membership functions
my X —{0,1}.

Now consider the fuzzy subsets of X. The fuzzy subset A =(}3) can be viewed as
one of the continuum-many continuous-valued membership functions m, X —
[0, 1]. Indeed this is the classical Zadeh'® sets-as-functions definition of fuzzy sets.
In this example element x, belongs to, or fits in, subset A a little bit—to degree 4.
Element x, has more membership than not at 2. Analogous to the bit vector
representation of finite (countable) sets, we say that A4 is represented by the fit
vector (33). The element m,(x;) is the ith fit'® or fuzzy unit value. The
set-as-points view then geometrically represents the fuzzy subset 4 as a point in [?
the unit square, as in Figure 2.

The midpoint of the cube [ is maximally fuzzy. All its membership values are 1.
The midpoint is unique in two respects. First, the midpoint is the only set A that
not only equals its own opposite A° but equals its own overlap and underlap as
well:

A=An A= AU A = A"

Second, the midpoint is the only point in the cube [ that is equidistant to each
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{x1}=(0 1)T ’x.~.(1 1)
4 oh
X2 : L
('Y : ®
@=(00) 1 {x1}=(10)
3 Xy

Figure 2 Sets as points. The fuzzy subset 4 is a point in the unit 2-cube with coordinates or fit values
(3d). The first clement x, fits in or belongs 0 A to degree §, the clement x, to degree 1. The cube
consists of all possible fuzzy subsets of two clements {x,x,}. The four comers represent the power set
2¥ of {x,,x,}.

of the 2" vertices of the cube. The nearest corners are also the farthest. This
metrical relationship is evident in Figure 2.

Fuzzy sets are combined'® pairwise with minimum, maximum, and order
reversal, as are nonfuzzy sets. Fuzzy set intersection is defined fitwise by pairwise
minimum (picking the smaller of the two elements), union by pairwise maximum,
and complementation by order reversal. For example:

A=(l 0.8 0.4 0.5)
B=(09 0.4 0 0.7)
AnB=(09 0.4 0 0.5)
AUB=(1 08 0.4 0.7)
A°=(0 0.2 0.6 0.5)
ANA=(0 0.2 0.4 0.5)
AU A =(1 0.8 0.6 0.9).

Note that the overlap fit vector AnA° 1s not the vector of all zeroes and the
underlap fit vector AU A° 1s not the vector of all ones. This is true of all properly
fuzzy sets, all points in " other than vertex points. Indeed the min-max definitions
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{x2}=(0 1)’_ : .X=(1 1)
-3 S "; ...... ;fwf. ..
X2 . °
g S AOA‘% ...... ;4‘ .....
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@=(00) % % {x1}=(10)
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Figure 3 Completing the fuzzy square. The fuzzier A is, the closer 4 is to the midpoint of the fuzzy
cube. As A approaches the midpoint, all four points—A, A5, AN A, and AuA“—contract to the
midpoint. The less fuzzy A is, the closer A is to the nearest vertex. As A approaches the vertex, all four
points spread out to the four vertices and the bivalent power set 2% is recovered.

give at once the following fundamental characterization of fuzziness as non-
degenerate overlap and nonexhaustive underlap.

ProposiTioN A is properly fuzzy if and only if ANA*#Q and if and only if
AVA#£X.

An illustration of this fundamental proposition is what we might call completing
the fuzzy square. Consider again the two-dimensional fuzzy set A defined by the fit

vector (32). The corresponding overlap and underlap sets can be found by first
finding the complement set A° and then combining the fit vectors pairwise with

minimum and with maximum:

A=( I
A=(3)

Andi=(
AuAd=(3 .

The sets-as-points view shows that these four points in the unit square hang
together, indeed move together, in a very natural way. Consider the geometry of
Figure 3.

In Figure 3 the four fuzzy sets involved in the fuzziness of set A—the sets A, A,
AN AS, and AU A“—contract to the midpoint as A becomes maximally fuzzy and
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expand out to the Boolean corners of the cube as 4 becomes minimally fuzzy. The
same contraction and expansion occurs in n dimensions for the 2" fuzzy sets
defined by all combinations of m (x,) and m (x,),...,m(x,) and m_(x,).

At the midpoint nothing is distinguishable. At the vertices everything is
distinguishable. These extremes represent the two ends of the spectrum of logic
and set theory. In this sense the midpoint is the black hole of set theory.

5. PARADOX AT THE MIDPOINT

The midpoint is full of paradox. It is forbidden to classical logic and set theory.
Where midpoint phenomena appear in Western thought they are invadably
labeled “paradoxes™ or denied altogether. Midpoint phenomena include the half-
empty and half-full cup, the Taoist Yin-Yang, the liar from Crete who said that all
Cretans are liars, Bertrand Russell's set of all sets that are not members of
themselves, and Russell’s barber.

Russell's barber is a bewhiskered man who lives in a town and shaves a man if
and only if he does not shave himself. So who shaves the barber? If he shaves
himself, then by definition he does not. But if he does not shave himself, then by
definition he does. So he does and he does not—contradiction (“paradox™).
Gaines* observed that this paradoxical circumstance can be numerically inter-
preted as follows.

Let S be the proposition that the barber shaves himself and not-S that he does
not. Then since S implies not-S and not-S implies S, the two propositions are
logically equivalent: S=not-S. Equivalent propositions have the same truth values:

(S)=t(not-5)
=1-1(8).

Solving for (S) gives the midpoint point of the truth interval (the one-dimensional
cube [0,1]): «(S)=1. The midpoint is equidistant to the vertices 0 and 1. In the.
bivalent (two-valued) case, roundoff is impossible and paradox occurs.

In bivalent logic both statements S and not-S must have truth value zero or
unity. The fuzzy resolution of the paradox only uses the fact that the truth values
are equal. It does not in principle constrain their range. The midpoint value 3
emerges from the structure of the problem and the order-reversing effect of
negation.

The paradoxes of classical set theory and logic are part of the price one pays for
an arbitrary insistence on bivalence. This insistence is often made in the name of
science. In the end, though, if is simply a cultural preference, a reflection of an
educational predilection that goes back at least to Anstotle. It takes great faith to
insist on bivalence in the face of both bivalent contradictions (paradoxes) and a
consistent fuzzy alternative.

Put another way, fuzziness shows that there are limits to logical certainty. We
can no longer assert the laws of noncontradiction and excluded middle for
sure—and for free.

The fuzzy theorist must explain why so many people have been wrong for so
long. We now have the machinery to offer an explanation. The reason is that
rounding off, quantizing, simplifies life and often costs little. We agree to call empty
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Figure 4 The count M(A) of A is the fuzzy Hamming norm (!' norm) of the vector drawn from the
origin 10 A.

the near empty cup, and present the large pulse and absent the small pulse. We
round off points inside the fuzzy cube to the nearest vertex. This roundoff heuristic
works fine as a first approximation to describing the universe until we get near the
midpoint of the cube. These phenomena are harder to roundoff. In the logically
extreme case, at the midpoint of the cube, the procedure breaks down completely
because every vertex is equally close. Hands are thrown up and paradox declared.

Faced with midpoint phenomena, the fuzzy skeptic is in the same position as the
flat-carther, who denies that the earth’s surface is curved, when she stands at the
north pole, looks at her compass and wants to go south.

6. COUNTING WITH FUZZY SETS

How big is a fuzzy set? The size or cardinality of 4, M(A), is the sum of the fit
values of A:

M(A4)= Z m (x;).

i=1

The count of A=(}3) is M(A)=5+3=13. The cardinality measure M is
sometimes called the sigma-count.'’ The measure M generalizes® the classical
counting measure of combinatorics and measure theory. (So (X,I", M) is the
fundamental measure space of fuzzy theory.) In general the measure M does not
give integer values.

The measure M has a natural geometric interpretation in the sets-as-points
framework. It is the magnitude of the vector drawn from the origin to the fuzzy

sci, as iilustrated in Figure 4.
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Consider the I” distance between fuzzy sets A and B in I*:

I’(A, B) = ‘:/E ImA(xl) —ma(x‘.)l’,

i=1

where 1<p<co. The [* distance is the physical Euclidean distance actually
illustrated in the figures. The simplest distance is the I' or fuzzy Hamming distance,
the sum of the absolute fit differences. We shall use fuzzy Hamming distance
throughout, though all results admit a general [? formulation. Using the fuzzy
Hamming distance the count M can be rewritten as the desired I' norm:

”

M(A)= z m 4(x;)

i=1

= Z ImA(xi) - OI
= Z lmA(xi) - mg(xi)l
=1'(4, D).

7. THE FUZZY ENTROPY THEOREM

How fuzzy is a fuzzy set? Fuzziness is measured by a fuzzy entropy measure.
Entropy is a generic notion. It need not be probabilistic. Entropy measures the
uncertainty of a system or message. A fuzzy set is a type of system or message. Its
uncertainty is its fuzziness.

The fuzzy entropy of A, E(A), varies from 0 to 1 on the unit hypercube I". Only
the cube vertices have zero entropy, since nonfuzzy sets are unambiguous. The
cube midpoint uniquely has maximum entropy one. Fuzzy entropy smoothly
increases as one moves from any vertex to the midpoint. The algebraic require-
ments for fuzzy entropy measures can be found in Klir.®

Simple geometric considerations lead'® to a ratio form for the fuzzy entropy.
The closer the fuzzy set A is to the nearest vertex A4,.,. the farther A4 is from the
farthest vertex A,,. Opposite the long diagonal from the nearest vertex is the
farthest vertex. Let a denote the distance I'(4, A4,.,,) to the nearest vertex and let b
denote the distance I'(A4,A,,) to the farthest vertex. Then the fuzzy entropy is
simply the ratio of a to b:

a_IYA, Aver)

HA=5=T4, 4,.)°
The sets-as-points interpretation of the fuzzy entropy is shown in Figure S, where
A=), A =(01), and A, =(10). So a=}+4=75 and b=3+3=1. So E(A)=
]
7

Alternatively, those reading this in a room can imagine that the room is the unit

e
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Figure S Fuzzy entropy E(A)=afb as balance between distance to necarest vertex and distance to
farthest vertex.

cube I* and that their head is a fuzzy set in it. Once the nearest corner of the
room is located, the farthest corner is opposite the long diagonal emanating from
the nearest corner. If your head is in a corner, a=0 and E(A4)=0. If your head is
in the metrical center of the room, every corner is nearest and farthest. So a=5b
and E(A)=1.

Since overlap and underlap characterize fuzziness we can expect them to be
involved in the measure of fuzziness. Careful examination of the completed fuzzy
square in Figure 3 shows that this is the case. For, by symmetry, each of the four
points A, A5, An A°, and AU A° is equally close to its nearest vertex. The common
distance is a. Similarly, each point is equally far from its farthest vertex. The
common distance is b. One of the first four distances is the count M(A N A). One
of the second four distances is the count M(A4 U A9). This gives a geometric proof
of the Fuzzy Entropy Theorem,'®'! which states that fuzziness consists of a
balance of counted violations of the law of noncontradiction and counted
violations of the law of excluded middle.

Fuzzy EnTROPY THEOREM

M(An A9
am"MmuAW
An algebraic proof is straightforward. The geometric proof can be seen by
examining the completed fuzzy square in Figure 6.

The Fuzzy Entropy Theorem explains why fuzziness begins where Western logic
ends. When the taws of noncontradiction and excluded middle are obeyed, overlap
is empty and underlap is exhaustive. So M(ANA)=0 and M(AuU A°)=n, and thus
E(A)=0.




Lo

FUZZINESS VS. PROBABILITY

{xz}=(0 1)\ . ﬁx-—-“ 1)
a4
4
X2
L
4
D=(00) {x1}=(10)

X1

Figure 6 Geometry of the Fuzzy Entropy Theorem. By symmetry each of the four points on the
completed fuzzy square is equaily close to its nearest vertex and equally far from its farthest vertex.

The Fuzzy Entropy Theorem also provides a first-principles derivation of the
basic fuzzy set operations of minimum (intersection), maximum (union), and order
reversal (complementation) proposed in 1965 by Zadeh'® at the inception of fuzzy
theory. (Lukasiewicz first proposed these operations for continuous or fuzzy logics

in the 1920s.)
For the fuzzy theorist, this result also shows that triangular norms or T-norms,?

which generalize conjunction or intersection, and the dual triangular co-norms C,
which generalize disjunction or union, do not have the first-principles status of

min and max. For, the trangular norm inequalities,
T(x, y) S min(x, y) S max(x, y) £ Clx, y),

show that replacing min with any T in the numerator term M(A N A9 can only
make the numerator smaller. Replacing max with any C in the term M(A U A9
can only make the denominator larger. So any T or C not identically min or max
makes the ratio smaller, strictly smaller if A is fuzzy. Then the entropy theorem
does not hold and the resulting pseudo-entropy measure does not equal unity at
the midpoint, though it continues to be maximized there. This can be easily seen
with the product T-norm'® T(x, y)=xy and its DeMorgan dual co-norm C(x, y)=
1-T(l—x,1 —y)=x+y—xy, or with the bounded sum T-norm T(x,y)=
max (0, x+ y—1) and DeMorgan dual C(x, y)=min(l,x+ y). The Entropy Theorem
similarly fails in general if the negation or complementation operator N(x)=1—x
is replaced by a parameterized operator N, (x)=(1 —x)/(1 +ax) for nonzero a> — 1.

As an aside, note that all probability distributions, all sets 4 with M(A)=1, in "
form a n—1 dimensional simplex §". In the unit square the probability simplex is
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the negatively sloped diagonal line. In the unit 3-cube it is a solid tnangle. In the
unit 4-cube it is a tetrahedron, and so on up.

If no probabilistic fit value p; is such that p,>3§, then the Fuzzy Entropy
Theorem implies'! that the distribution P has fuzzy entropy E(P)=1/(n—1). Else
E(P)<1/(n—1). So the probability simplex S" is entropically degenerate for large
dimensions n. This result also shows that the uniform distnibution (1/n,...,1/n)
maximizes fuzzy entropy on S* but not uniquely. This in turn shows that fuzzy
eantropy differs from the average-information measure of probabilistic entropy,
which is uniquely maximized by the uniform distribution.

The Fuzzy Entropy Theorem also implies that, analogous to log 1/p, a unit of
fuzzy information is /(1 — f) or (1~ f)/f. depending on whether the fit value f
obeys f<jor f23.

The event x can be ambiguous or clear. It is ambiguous if f is approximately 3
and clear if f is approximately 1 or 0. If an ambiguous event occurs, is observed,
is disambiguated, etc, then it is maximally informative: E(f)=E(})=1. If a clear
event occurs, is observed, etc, it is minimally informative: E(f)=E(0)=E(1)=0.
This i1s in accord with the information interpretation of the probabilistic: entropy
measure log 1/p, where the occurrence of a sure event (p=1) is minimally
informative (zero entropy) and the occurrence of an impossible event (p=0) is
maximally informative (infinite entropy).

8. THE SUBSETHOOD THEOREM

Sets contain subsets. A is a subset of B, denoted Ac B, if and only if every element
of A is an element of B. The power set 2? contains all of B's subsets. So,
alternatively,! A4 is a subset of B just in case 4 belongs to B’s power set:

AcB ifand only if A€2®.

The subset relation corresponds to the implication relation in logic. In classical
logic truth is a mapping from the set of statements {S} to truth values:
t:{S}—{0,1}. Consider the truth-tabular definition of implication for bivalent
propositions P and Q:

{ P—’Q

——O O™~

@
) i
1 1
0 0
! t

The implication is false if and only if the antecedent P is true and the consequent
Q 1s false—when “truth implies falsehood”.

The same holds for subsets. Representing sets as bivalent functions m,: X —{0, 1},
A is a subset of B if there is no element x that belongs to A but not to B, or
m,(x)=1 but mg(x)=0. This membership-function definition can be rewritten as
follows:

Ac B if and only if m(x) Smg(x) for all x.
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Figure 7 Fuzzy power set F(2%) as a hyper-rectangie in the fuzzy cube. Side lengths are the fit values
my(x;). The size or volume of F(2°) is the product of the fit values.

Zadeh!® proposed the same relation for defining when fuzzy set A4 is a subset of
fuzzy set B. We refer to this as the dominated membership function relationship. If
A=(0300.7) and B=(0.40.70.9), then A4 is a fuzzy subset of B but B is not a fuzzy
subset of A. A candidate fuzzy set A either is or is not a fuzzy subset of B. This is
the problem. The relation of fuzzy subsethood is not fuzzy. It is either black or
white.

The sets-as-points view asks a geometric question: What do all fuzzy subsets of
B look like? What does the fuzzy power set of B—F(2°), the set of all fuzzy subsets
of B—look like? The dominated membership function relationship implies that
F(2%) is the hyper-rectangle emanating from the origin with side lengths given by
the fit values m(x,). Figure 7 displays the fuzzy power set of the set B=(}3). Of
course the count of F(2%) is infinite if B is not empty. For finite-dimensional sets,
the size of F(2%) can be taken'' as the Lebesgue measure or volume V(B), the

product of the fit values:
V(B)= n mpg(x;).
i=1

Figure 7 illustrates that F(2°) is not a fuzzy set. A cube point A either is or is
not in the hyper-rectangle F(2°%). Some points A outside the hyper-rectangle F(25)
resemble subsets of B more than other points do. The black-white definition of
subsethood ignores this.

The natural generalization is to define fuzzy subsets on F(2%). Some sets A
belong in F(2°) to different degrees. The abstract membership function mg;s,(A)
can be any number in [0, 1]. Degrees of subsethood are possible.

Let S(A, B) denote the degree to which A4 is a subset of B:
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S(A, B)=Degreec(Ac B)

=Mg, ﬂ)(A)-

S(-, ) is the subsethood measure. S(- , -) takes values in [0, 1]. We will see that 1t
is the fundamental, unifying structure in fuzzy theory.

The current task is to measure S(A4,B). We will first present an earlier
algebraic derivation of the subsethood measure S(A, B). We will then present a
new, more fundamental, geometric derivation.

The algebraic derivation is the fit-violation strategy.'® The idea is that you
study a law by breaking it. Consider the dominated membership function
relationship: A< B if and only if m(x) Smy(x) for all x in X.

Suppose element x, violates the dominated membership function relationship:
m (x,)>mg(x,). Then A is not a subset of B, at least not totally. Suppose further
that the dominated membership inequality holds for all other elements x. Only
element x_ violates the relationship. For instance, X may consist of one hundred
values: X ={x,,...,X,00}- The violation might occur, say, with the first element:
x; =X,. Then intuitively A is largely a subset of B. Suppose now that X contains a
thousand elements, or a trillion elements, and only the first element violates the
dominated membership function relationship. Then surely A is overwhelmingly a
subset of B; perhaps S(A4, B) =0.999999999999.

This argument suggests we should count fit violations in magnitude and
frequency. The greater the violations in magnitude, m,(x,)—mp(x,), and the
greater the number of violations relative to the size M(A4) of A, the less 4 1s a
subset of B; equivalently, the more A is a superset of B. For, both intuitively and
by the dominated-membership definition, supersethood and subsethood are inver-
sely related:

10.11

SUPERSETHOOD (A, B\=1—-5(A, B).

The simplest way to count violations is to add them. If we sum over all x, the
summand should equal m (x,) —mg(x,) when this difference 1s positive, zero when
it is nonpositive. So the summand is max (0, m4(x) —mg(x)). The unnormalized
count is therefore the sum of these maxima:

Y. max (0, m4(x) — mg(x)).

xeX

The simplest, and most appropriate, normalization factor is the count of A, M(A).
We can assume M(A)>0 since M(A)=0 if and only if A is empty. The empty set
trivially satisfies the dominated membership function relationship. So it is a subset
of every set. Normalization gives the minimal measure of nonsubsethood, of

supersethood:

Y. max(0,m(x) —my(x))
SUPERSETHOOD (A, B) = Yoy .

Then subsethood is the negation of this ratio. This gives the minimal fit-violation
measure of subsethood:
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3 max (0, m(x) — mp(x))

S(A,B)=1- M{A)

The subsethood measure may appear ungraceful at first but it behaves as it
should. Observe that S(A4, B)=1 if and only if the dominated membership function
relationship holds. For if it holds, zero violations are summed. Then
S(A,B)=1—-0=1. If §(4, B)=1, every numerator summand is zero. So no violation
occurs. At the other exteme, S(A4, B)=0 if and only if B is the empty set. So the
empty set is the unique set without subsets, fuzzy or nonfuzzy. Degrees of
subsethood occur between these extremes.

The subsethood measure also relates to logical implication. Viewed at the 1-
dimensional level of fuzzy logic, and so ignoring the normalizing count (M(A)=1),
the subsethood measure reduces to the Lukasiewicz implication operator:

S(A, By=1—-—max(0,m, —mg)
=1—[1-min(1-0,1—(m,—mpg))]
=min(l,1 —m +mpg)
=1,(A~B),

which clearly generalizes the truth-tabular definition of bivalent implication.
Consider the fit vectors A=(0.200.40.5) and B=(0.70.60.3 0.7). Neither set is a
proper subset of the other. A is almost a subset of B but not quite since
m 4(x3) —my(x3) =0.4—0.3=0.1>0. Hence S(4, B)=1—2{=19. Similarly S(B, 4)=
1-43=14%
The concept of subsethood applies to nonfuzzy sets. Consider the sets

C={x,,X3,X3,X5,X7,Xg,X10, X125 X 14}

and

D={xz,x3;x4,xs,Xc,X1,Xeyx9,xnovxuvxu’xu}
with corresponding bit vectors
C=(11101t010110101)
D=01111111110111)

C and D are not subsets of each other. But C should very nearly be a subset of D
since only x, violates the dominated membership function relationship. We find
S(C,D)=1-}=§ while S(D,C)=1—15=4%. So D is more a subset of C than it is
not. This is because the two sets are largely equivalent. They have much overlap:
M(CnD)=8. This obtservation motivates the Fuzzy Subsethood Theorem pre-
sented below. First, though, we present a new geometric derivation of the

subsethood measure.
Consider the sets-as-points geometry of subsethood in Figure 7. Set A is cither
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in the hyper-rectangle F(2%) or not. Intuitively the subsethood of 4 in B should be
nearly unity when A is arbitrarily close to the fuzzy power set F(2°). The farther
away, the less the subsethood S(A4,B) or, cquivalently, the greater the
supersethood.

So the key idea is metrical: How close is A to F(2%)? Let d(A, F(2%)) denote this
[? distance. There is a distance d(A4, B) between A and every point B’ in the
hyper-rectangle, every subset B’ of B. The distance d(A, F(2%)) is the smallest such
distance. Since the hyper-rectangle F(2°) is geometrically well behaved—F(2%) is
closed and bounded (compact) and convex—some subset B* of B achieves this
minimum distance. So the infimum, the greatest lower bound, is the distance

d(A, B*):
d(A, F(2%) =inf {d(A, B): B’ € F(2%)}
=d(4, B*).

The closest set B* is easy to locate geometrically. In the Euclidean or ¢? case,
this is formally due to the geometric Hahn-Banach Theorem since F(2°) is convex.
If Ais a subset of B— if A is in the hyper-rectangle F(2%)—then A itself is the
closest subset: 4 =B*. So suppose A is not a proper subset of B.

The unit cube I” can be sliced into 2" hyper-rectangles by extending the sides of
F(25) to hyperplanes. The hyperplanes intersect perpendicularly (orthogonally), at
least in the Euclidean case. F(2%) is one of the hyper-rectangles. The hyper-
rectangle interiors correspond to the 2* cases whether m (x;) <mg(x;) or m,(x;)>
mg(x,) for fixed B and arbitrary A. The edges are the loci of points when some
m ((x;) =mp(x).

The 2" hyper-rectangles can be classified as mixed or pure membership
domination. In the pure case either m,<mp or m,>mg holds in the hyper-
rectangle interior for all x and all interior points A. In the mixed case
m (x;) <mg(x;) holds for some of the coordinates x; and m,(x;)>mg(x;) holds for
the remaining coordinates x; in the interior for all interior 4. So there are only
two pure membership-domination hyper-rectangles, the set of proper subsets F(2°)
and the set of proper supersets.

Figure 8 illustrates how the fuzzy power set F(2%) of B=(}%) can be linearly
extended to partition the unit square into 22 =4 rectangles. The non-subsets A,
A, and A, reside in distinct quadrants. The northwest and southeast quadrants
are the mixed membership-domination rectangles. The southwest and the north-
east quadrants are the pure rectangles.

The nearest set B* to A in the pure superset hyper-rectangle is B itself. The
nearest set B* in the mixed case is found by drawing a perpendicular (orthogonal)
line segment from A to F(2%). Convexity of F(2%) is responsible. In Figure 8 the
perpendicular lines from A, and A, intersect line edges (l-dimensional linear
subspaces) of the rectangle F(2°). The line from A, to B, the corner of F(25), is
degenerately perpendicular since B i1s a zero-dimensional linear subspace.

These “orthogonality” conditions are more pronounced in three dimensions. Let
your room again be the unit 3-cube. Consider a large dictionary fit snugly against
the floor corner corresponding to the origin. Point B is the dictionary corner
farthest from the origin. Extending the three exposed faces of the dictionary
partitions the room into 8 octants, one of which is occupied by the dictionary.

;—
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Figure 8 Partition of hypercube [® into 2* hyper-rectangles by lincarly extending F(2%). The ncarest
points B} and Bj to points A, and A, in the northwest and southeast quadrants are found by the
normals from F(2%) to A, and A,. The nearest point B* to point A, in the northeast quadrant is itself.
This “orthogonal™ optimality condition allows d(4, B) to be given by the general Pythagorean Theorem
as the hypotenuse in an ¢f “right™ triangle.

Points in the other 7 octants are connected to the nearest points on the dictionary
by lines that perpendicularly intersect one of the three exposed faces, one of the

three exposed edges, or the corner B.
The “orthogonality” condition invokes the /?-version of the Pythagorean

Theorem. For our ¢! purposes:
d(A, By=d(A, B*)+d(B, B*).

The more familiar {*-version, actually pictured in Figure 8, requires squaring these
distances. For the general /7 case:

4~ Bl =~ B + 18-~

or ejuivalently,

Y lai—bil" =3 |a,—bfP+ ¥ |bf -bi".

i=1 i=1 i=1
Equality holds for all p21 since, as is clear from Figure 8 and in general, from the
algebraic argument below, either b =a, or b =b,.

This Pythagorean equality is surprising. We have come to think of the
Pythagorean Theorem (and orthogonality) as an ¢? or Hilbert space property. Yet
here it holds in every /7 space—if B* is the set in F(2%) closest to A in /” distance.
Of course for other sets strict inequality holds in general if p#2. This suggests a
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Figure 9 Dependence of subsethood on the count M(A). 4, and A, are equidistant to F(2°) but 4, is
closer to B than A, is: correspondingly, M(A4,)> M(A,). Loci of points A of constant count M(A) arc
line segments parallel to the negatively sloping long diagonal. I' spheres centered at B are diamond

shaped.

special status for the closest set B*. We shall sece below that the Subsethood
Theorem confirms this suggestion. We shall use the term “orthogonality™ loosely
to refer to this ¢° Pythagorean relationship, while remembering its customary
restriction to /2 spaces and inner products. '

The natural suggestion is to define supersethood as the distance d(4, F(2%))=
d(A, B*). Supersethood increases with this distance, subsethood decreases with it.
To keep supersethood, and thus subsethood, unit-interval valued, the distance
must be suitably normalized.

The simplest way to normalize d(A, B*) is with a constant: the maximum unit-
cube distance, n'/? in the general /” case and n in our case. This gives the
candidate subsethood measure

s(4,B)=1- 4B

This candidate subsethood measure fails in the boundary case when B is the
empty set. For then d(A, B*)=d(A, B)=M(A). So the measure gives S(4,J)=
1 —(M(A)/n)>0. Equality holds exactly when A=X. But the empty set has no
subsets. The only normalization factor that ensures this is the count M(A). Of
course M(A)=n when A=X.

Normalizing by n also treats all equidistant points the same. Consider points 4,
and A, in Figure 9. Both points are equidistant to their nearest F(2%) point:
d(A,, B})=d(A,,B}). But A, is closer to B than A,. In particular 4, is closer to
the horizontal line defined by the fit value mg(x,)=%. The variable quantity that
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teflects this is the count M(A): M(A,)>M(A,). The count gap M(A,)-- M(A,) is
due to the fit gap involving x,, and reflects d(4,, B) <d(A,, B). In general the count
M(A) relates to this distance, as can be seen by checking extreme cases of closeness
of A to B (and drawing some diamond-shaped I' spheres centered at B). Indeed if
m >mg everywhere, d(A, B)= M(A)— M(B).

Since F(2°) fits snugly against the origin, the count M(A) in any of the other
2"—1 hyper-rectangles can only be larger than the count M(B*) of the nearest
F(2% points. The normalization choice of n leaves the candidate subsethood
measure indifferent to which of the 2" —1 hyper-rectangles A is in and to where 4
is in the hyper-rectangle. Each point in each hyper-rectangle involves a different
combination of fit violations and satisfactions. The normalization choice of M(A)
reflects this fit violation structure as well as behaves appropriately in boundary

cases.
The normalization choice M(A) leads to the subsethood measure

_ d(4,B*)

S(4,B)=1-= 2.

We now show that this measure is equal to the subsethood measure derived

algebraically above.
Let B’ be any subset of B. Then by definition the nearest subset B* obeys the

inequality:
” lai"bi“’ pS " Z |ai"‘b:'|',
i=1 i=1

where for convenience a;=m ((x;) and similarly for the b, fit values. We will assume
p=1 but the following characterization of b} is valid for any p> 1.

By orthogonality we know that a; is at least as big as b?. So first suppose
a;=b?. This occurs if and only if no violation occurs: a;<b,. (If this holds for all i,
then A =B*) So max(0,a;—b;)=0. Next suppose a;,>b?. This occurs if and only if
a violation occurs: a;>b,. (If this holds for all i, then B=B*.) So b} =b, since B* is
the subset of B nearest to A. Equivalently, a;,>b, holds if and only if
max(0,a,—b;))=a;—b;. So the two cases together prove that max(0,a;—b;)=
la;—b?|. Summing over all x, gives:

d(A,B%)= 2.: max (0, m (x,) —mg(x,)).

i=1

So the two subsethood measures are equivalent.

This proof also proves a deeper characterization of the optimal subset
B*:B*=An B. For if a violation occurs, a,>b; and b,=b?. So min(a,b,)=b;.
Otherwise a;=b?, and so min(a;, b;)=b}.

This in turn proves that B* is a point of double optimality. Not only is B* the
subset of B nearest A, B* is also A*, the subset of 4 nearest to B:d(B, F(24))=
d(B, A*) =d(B, B*). Figure 10 illustrates that B*=ANB=A* is the set within both
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Figure 10 B* as both the subset of B necarest A and the subset 4A* of A nearest B: B*=A*=ANB.
The distance d(A4, B*)= M(A)— M(An B) illustrates the Subsethood Theorem.

the hyper-rectangle F(24) and the hyper-rectangle F(2%) that has maximal count
M(AnB).

Figure 10 also shows that the distance d(A, B*) is a vector magnitude difference:
d(A, B*)=M(A)— M(AnB). Dividing both sides of this equality by M(A4) and
rearranging proves a surprising and still deeper structural characterization of
subsethood, the Subsethood Theorem.

SuBsSETHOOD THEOREM

_M(AnB)
S(A,B)-—————M(A) .

The ratio form of the subsethood measure S(A, B) is familiar. It is the same as
the ratio form of the conditional probability P(B|4). The fundamental difference is
that the ratio form is derived for the subsethood measure S(A, B) but assumed for
the conditional probability P(B(A). This is the difference between showing and
telling. The inability to derive conditional probability further suggests that
probability is not real. For every probability is a conditional probability,
P(A)=P(A|X).

Consider first the physical interpretation of randomness as a relative frequency.
The Subsethood Theorem suggests that randomness 1s a working fiction akin to
the luminiferous ether of nineteenth-century physics—the phlogiston of thought.
For in one stroke we can now denve the relative frequency definttion of
probability as S(X, 4), the degree to which a bivalent superset X, the sample space,
is a subset of its own subset A. The concept of randomness never enters the
deterministic framework.

Suppose A and B are nonfuzzy subsets of X. (X, like every observed set, is at
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most countably infinite.) Suppose A4 is a subset of B. In the extreme case B=X.
Then the degree of subsethood §(B, A) is what has traditionally been called a
relative frequency:

M(4)

S(B'A)=M(B)

n,
N’

where the N elements of B constitute the de facto universe of discourse of the
“experiment”. (Of course the limit of the ratio S(B,A) can be taken if it
mathematically makes sense.’) The probability n,/N has been reduced to degrees
of subsethood, a purely fuzzy set-theoretical relationship. An immediate histoncal
speculation is that if set theory had been more carefully worked out first, the
notion of “randomness™ might never have culturally evolved.

A classical example of relative frequency is the number n, of successful tnals in
N tnals. A biological example is the number of blue-cyed genes or alleles at all
such chromosomal loci in a gene pool. The new way of expressing these relative
frequencies S(B, A) is the degree to which all trnials are successes or all genes at a
specific chromosomal location are for blue-eyedness. If the distinction between
successful and unsuccessful trials is not clear cut, the resulting fuzzy relative
frequency S(B, A) may be real-valued. The {requency structure remains since 4 is a
subset of B (since B=X invariably in practice).

Where did the “randomness™ go? The relative frequency S(B, A) describes a fuzzy
state of affairs, the degree to which B belongs to the power set of 4: S(B,A)=
m,«(B). (Consider B=X and A={x,} in the unit square: the frequency S(X, A)
corresponds by the Pythagorean Theorem to the ratio of the left cube edge and
the long diagonal to X.) Whether S(B, 4) is a rational or irrational number seems
a technicality, a matter of fineness of quantization, if it is not zero or oae. In
practice only physical objects like tossed coins and DNA strands are involved.
Their individual behavior might be fully determined by a system of differential
equations.

The key quantity is the measure of overlap M(An B). This count does not
involve “randomness”. It counts which elements are identical or similar and to
what degree. The phenomena themselves are deterministic. The corresponding
frequency number that summarizes the deterministic situation is also deterministic.
The same situation always gives the same number. The number may be used also
to place bets or to switch a phone line, but it remains part of the description of a
specific state of affairs. The deterministic subsethood derivation of relative
frequency eliminates the need to invoke an undefined “randomness™ to further
describe the situation.

The identification of relative frequency with probability is cultural, not logical.
This may take getting used to after hundreds of years of casting gambling
intuitions as matters of probability and a century of building probability into the
description of the universe. It is ironic that to date every assumption of
probability—at least in the relative frequency sense of science, engineering,
gambling, and daily life—has actually been an invocation of fuzziness.
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9. BAYESIAN POLEMICS

Bayesian probabilists interpret probability as a subjective state of knowledge. In
practice they use relative frequencies (subsethood degrees) but only to approximate
these “states of knowledge™.

Bayesianism is a polemical doctrine. Bayesians claim that they, and only they,
nse 21l and only the available uncertainty information in the description of
uncertain phenomena. This stems from the Bayes Theorem expansion of the “a
posteriori” conditional probability P(H,E), the probability that H;, the ith of
k-many disjoint hypotheses {H,}, is true when evidence E is observed:

P(EAH)
P(E)

_P(E[H)P(H)
P(E)

P(H,|E)=

__ P(E|H)P(H)
" 2j-1 PLE[H)P(H))’

since the hypotheses partition the sample space X: HuH,u---UH,=X and
HnH;=F ifi#].

Conceptually, Bayesians use all available information in computing this pos-
terior distribution by using the “a priori” or prior distribution P(H;) of the
hypotheses. Mathematically, the Bayesian approach clearly stems from the ratio
form of the conditional probability.

The Subsethood Theorem trivially implies Bayes Theorem when the hypotheses
{H;} and evidence E are nonfuzzy subsets. More important, the Subsethood
Theorem implies the Fuzzy Bayes Theorem in the more interesting case when the
observed data E is fuzzy:

_ S(H, EEM(H))
S(E, H‘-)—gz  S(H,E\M(H))
— S(Hiv E)j:
Z;___! S(Hp E)L‘
where
_M(H)_MH) _

is the “relative frequency” of H,, the degree to which all the hypotheses are H;. So
the Subsethood Theorem allows fuzzyists to be “Bayesians™ as well.

The Subsethood Theorem implies inequality when the partitioning hypotheses
are fuzzy. For instance, if k=2, H® is the complement of an arbitrary fuzzy set H,
and evidence E is fuzzy, then'® the occurrence of nondegenerate hypothesis
overlap and underlap gives a lower bound on the posterior subsethood:
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S(H,E) fy
S(E,H)2 S(H,E) f,,+ S(H", E)fﬂ"

where f,=S(X,H). The lower bound is an increasing function of M(H), a
decreasing function of M(H). Since a like lower bound holds for S(E, H°), adding
the two posterior subsethoods gives the additive inequality:

S(E,H)+S(E,H) 21,
an inequality arrived at independently by Zadeh!” by directly defining a “relative

sigma-count” as the subsethood measure given by the Subsethood Theorem. If H
is nonfuzzy, equality holds as in the additive law of conditional probability:

P(H|E)+ P(H|E)=1.

The Subsethood Theorem implies a deeper Bayes Theorem for arbi{r}ary fuzzy
sets, the Odds-Form Fuzzy Bayes Theorem:

S(A, NH,A,) S(A;nH,A,) S(H, A,)
S(A,nH,A3) S(A5nH,A,) S(H,AS)

This theorem is proved directly by replacing the subsethood terms oa the
righthand side with their equivalent ratios of counts, canceling like terms three
times, multiplying by M(A4, nH)/M(A,n H), rearranging, and applying the Sub-
sethood Theorem a second time.

We have now developed enough fuzzy theory to examine critically the recent
anti-fuzzy polemics of Lindley!? and Jaynes® (and thus Cheeseman? who uses
Jaynes’ arguments). To begin we observe four more corollaries of the Subsethood

Theorem:

1) ~ UsS§(H,4) =1,

ii) . S(H,A)=1 ifHcaA,

i) S(H, AyUA)=S(H, A,)+S(H, A;)—S(H, A, " A3),
iv) S(H,A;nA,)=S(H,A)S(A,nH, A,).

Each relationship follows from the ratio form of S(4,B). The third relation-
ship uses the additivity of the count M(A), which follows from min(x,y)+

max(x,y)=x+y.
Now make the notational identification S(H, A)=P(A|H). We then obtain the
defining relationships of conditional probability proposed by Lindley:'?

Convexity: 0<P(A|H)S1 and P(A[H)=1 if H implies A,

Addition: P(A, U A,|H)=P(A|H)+ P(A;|H)— P(A, n A, | H),
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Multiplication: P(A, " Ay|H) = P(4,|H)P(A;| A, 0 H).

“From these three rules™, Lindley'? tells us,

all of the many, rich and wonderful results of the probability calculus follow. They may be described as
the axioms of probability.

Lindley takes these as “unassailable™ axioms:

We really have no choice about the rules governing our measurement of uncertainty: they are dictated
to us by the incxorable laws of logic.

Lindley proceeds to build a “coherence™ argument around the Odds-Form Bayes
Theorem, which he correctly deduces from the axioms as the equality:

P(AzlAlﬂm=P(AxlAznm P(A2|H)
P(AS|A,nH) P(4,[A5nH) P(AS|HY

where here we interpret A° as not-A. “Any other procedure”, wc are told, “is
incoherent.” This polemic evaporates in the face of the above four subsethood
corollaries and the Odds-Form Fuzzy Bayes Theorem. Ironically, rather than
establish the primacy of axiomatic probability, Lindley seems to argue that it is
fuzziness in disguise.

Another source of Bayesian probability polemic? is maximum entropy estima-
tion. Here the axiomatic argument rests on the so-called Cox’s Theorem.®> Cox’s
Theorem is best presented by its most vocal proponent, physicist E. T. Jaynes.

According to Jaynes:®

Cox proved that any method of inference in which we represent degrees of plausibility by real numbers,
is necessarily either equivalent to Laplace’s, or inconsistent,

where Laplace is cited as an early Bayesian probabilist. In fact Cox used bivalent
logic (Boolean algebra) and other assumptions to show that, again according to
Jaynes, the “conditions of consistency can be stated in the form of functional
equations,” namely the probabilistic product and sum rules:

P(An B|C)=P(A|BAC)P(B|C),
P(B|A) + P(B|A)=1.
The Subsethood Theorem implies
S(C,AnB)=S8(BnC, A)S(C, B),
S(4,B)+S(A,B) =1,

with, as we have seen, equality holding for the second subsethood relationship
when B is nonfuzzy, which ts the case in the Cox-Jaynes setting.
In the probabilistic case overlap and underlap are degenerate. So

— “
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P(AnA|B)=P(D|B) = ';,(g)) :

and P(BJAnA9)=P(B|@) is undefined. Yet in general S(B,ANA9)>0 and
S(AN A5, B) is defined when A is fuzzy and B is fuzzy or nonfuzzy.

Jaynes' claim is either false or concedes that probability is a special case of-
fuzziness. For strictly speaking, since the subsethood measure S(A, B) satisfies the
multiplicative and additive laws specified by Cox and yet differs from the
conditional probability P(B|A), Jaynes’ claim is false.

Presumably Jaynes was unaware of fuzzy sets. He seems to suggest that the only
alternative uncertainty theory is the frequency theory of probability, a theory we
have seen reduced to the subsethood measure S(X, 4). So if we restrict consider-
ation to nonfuzzy sets A and B, equality holds in the above subsethood relations
and Jaynes i1s right: probability and fuzziness coincide. But fuzziness exists, indeed
abounds, outside this restriction and classical probability theory does not. So fuzzy
theory is an extension of probability theory. Equivalently, probability then Is a
special case of fuzziness.

Incidentally, when one examines Cox’s actual arguments,® one finds that Cox
assumes that the uncertainty combination operators in question are continuously
twice differentiable! Min and max are not twice differentiable. Technically, Cox’s

theorem does not apply.

10. THE ENTROPY —SUBSETHOOD THEOREM

The Fuzzy Entropy Theorem and the Subsethood Theorem were independently
derived from first principles, from sets-as-points unit-cube geometry. Both
theorems involve ratios of cardinalities. A connection is inevitable.

The Entropy-Subsethood Theorem shows that the connection occurs ir terms of
overlap AN A° and underlap Au A° (what else?). The theorem says fuzzy entropy
can be eliminated in favor of subsethood. So subsethood emerges as the
fundamental, characterizing quantity of fuzziness—and, arguably, of probability as
well.

ENTROPY-SUBSETHOOD THEOREM
E(A)=S(AU A, An A).

The theorem is proved by replacing B and A in the Subsethood Theorem
respectively with overlap AnA° and underlap Au A Since overlap i1s a
(dominated-membership function) subset of underlap, the intersection of the two
sets 1s just overlap.

The Entropy-Subsethood Theorem is a peculiar relationship. It says that
fuzziness is the degree to which the superset AU A is a subset of its own subset
An A, the extent to which the whole is a part of one of its own parts, a
relationship forbidden by Western logic.

This relationship violates our ingrained Venn-diagram intuitions of unambi-
guous set inclusion. Only the midpoint of I" yields total containment of underlap
in overlap. The cube vertices yield no containment. This parallels in the extreme
the relative frequency relationship S(X, A)=n,/N, where a nonfuzzy superset X is
to some degree a subset of one of its nonfuzzy subsets A.

M
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Figure 11 Entropy-Subscthood Theorem in two dimensions. Just as the long diagonals have equal
length, (A, A)=d(AUV A, AN A)=d* = M(AU A)— M(A N A9, the shortest distance from AU A to the
fuzzy power set of An A"

Figure 11 illustrates the Entropy-Subsethood Theorem. It shows that d*, the
shortest distance from underlap AU A to the hyper-rectangle defining the fuzzy
power set of overlap An A4°, is equivalent to d(AUA AN A)=d(4,A°) and to a
difference of vector magnitudes: d* = M(4A U A)— M(A N A°).

The Entropy-Subsethood Theorem implies that no probability measure
measures fuzziness. For the moment, suppose not. Suppose fuzzy entropy measures
nothing new; fuzziness is simply disguised probability. Suppose, as Lindley!?
claims, that probability theory “is adequate for all problems involving uncer-
tainty.” So there exists some probability measure P such that P=E. P cannot be
identically zero because P(X)=1. Then there is some A such that P(4)=E(4)>0.
But in a probability space there is no overlap or underlap: 4nA4°=( and
AVA=X.

The Entropy-Subsethood Theorem then implies that 0<P(A4)=E(A)=
S(AVAS,ANA)=S(X,d). The only way X can be a subset to any degree of the
empty set is if X itself, and hence A, is empty: X =A4 = (. Then the sure event X is
impossible: P(X)=P(F)=0. Or the impossible event is sure: P(Z)=1. Either
outcome is a bivalent contradiction, impervious to normalization. So there exists
no probability measure P that measures fuzziness. Fuzziness exists.

This within-cube theory can be extended'! to define a natural fuzzy integral with
respect to the fuzzy counting measure M. A more practical extension'! is to
mappings between fuzzy cubes, in particular to fuzzy associative memories. In
short, a fuzzy set is a point in a unit hypercube [". A fuzzy system S:I"—I” is a
mapping between cubes. Fuzzy systems map fuzzy subsets of the input space X to
fuzzy subsets of the output space Y. Fuzzy systems are tools of machine
intelligence, and can be applied to a wide range of control and decision problems.
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11. PRECISE PAST, FUZZY FUTURE*

The boat of uncertainty reasoning is being rebuilt at sea. Plank by plank fuzzy
theory is beginning to gradually shape its design. Today only a few fuzzy planks
have been laid. But a hundred years from now, a thousand years from now, the
boat of uncertainty reasoning may little resemble the boat of today. Notions and
measures of overlap An A° and underlap AU A° will have smoothed its rudder.
Amassed fuzzy applications, hardware, amd products will have broadened its sails.
And no one on the boat will believe that there was a time when a concept as
simple, as intuitive, as expressive'® as a fuzzy set met with such impassioned
denial.

How would the world be different today if fuzziness had been developed, taught,
and applied before probability theory? Suppose the fuzzy framework was worked
out at the time of Galileo of Laplace. Suppose Isaac Newton included an appendix
on the geometry of fuzzy sets in his Principia. What would be different today?

Reasoning systems in machine intelligence would surely be different. So would
be the range of automatic control devices. There would be many more of them,
and they would more accurately reflect our reasoning processes than do our
current decision trees and thermostats. Western belief systems might be more
Eastern, and vice versa. (How many Westerners can name five Eastern books?)
More of social science might be systematized. Historical tendencies would have
been easier to articulate and defend. Communication, signal processing, and
computational hardware might be built around the fit. Our physical explorations
of subatomic reality, antimatter, and the spacetime fabric may have led to different
times and places. Relative frequencies might be considered the everyday appli-
cation of fuzzy subsethood. Besides betting on games of chance or frequency,
betting on games of degree—perhaps involving simulated chaotic trajectories in
unit cubes (or guppies swimming in hand-held cubical aquana) or real-valued
dice—might help support the economy of Las Vegas.

As the total amount of information in society continues to grow exponentially,
the velocity of scientific and cultural change increases. Cultural change that once
took centuries can now occur in a few years, perhaps soon in a single year. A
current engineering example of this velocity of change 1s Moore’s Law, the
doubling of silicon-chip transistor density every one to two years.

One tendency of this information acceleration is to leave further behind what
has already been explored. The complementary tendency is to soon expenment
with systems that may at present seem distant, impractical, even absurd. In this
light the recent developments in fuzzy theory and in fuzzy applications and
hardware will surely affect the science, engineering, and culture of the future. The

question is to what degree.
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ADAPTIVE FUZZY SYSTEMS FOR BACKING
UP A TRUCK-AND-TRAILER
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Abstract

We developed fuzzy and neural-network control systems to back up a simulated truck,
and truck-and-trailer, to a loading dock in a planar parking lot. The fuzzy systems per-
formed well until we randomly removed over 50 % of their fuzzy-associative-memory (FAM)
rules. They also performed well when we replaced key FAM equilibration rules with de-
structive or “sabotage” rules. We trained the neural network systems with the supervised
backpropagatio.. learning algorithm and tested their robustness by removing random sub-
sets of training data in learning sequences. The neural systems performed well but required
extensive computation for training. We used unsupervised differential competitive learn-
ing (DCL), and product-space clustering, to adaptively generate FAM rules from training
data. The original fuzzy and neural control systems generated trajectory data. The DCL
system rapidly recovered the underlying FAM rules. Product-space clustering converted
the neural truck systems into structured sets of FAM rules that approximated the neural

system’s behavior.




Fuzzy and Neural Control Systems

We construct fuzzy and neural control systems directly from control data, but from
different types of control data. Fuzzy systems use a small number of structured linguistic
input-output samples from an expert or from some other adaptive estimator. Neural
systems use a large number of numeric input-output samples from the control process or
from some other database. Adaptive fuzzy systems also use numeric control data.

Figure 1 illustrates this difference. The neural system estimates function f: X — Y
from several numerical point samples (z;,3;). The fuzzy system estimates f from a few

fuzzy set samples or fuzzy associations (A4;, B;).

(a)

FIGURE 1 Geometry of neural and fuzzy function estimation. The neural
approach (a) uses several numerical point samples. The fuzzy approach (b)
uses a few fuzzy set samples.

Fuzzy and neural systems offer a key advantage over traditional control approaches.
They offer model-free estimation of the control system. The user need not specify how
the controller’s output mathematically depends on its input. Instead the user provides a
few common-sense associations of how the control variables behave. Or the user provides
a statistically representative set of numerical training samples. Even if a math-model
controller is available, fuzzy or neural controllers may prove more robust and easier to
modify.

Which system, fuzzy or neural, performs better for which type of control problem de-
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pends on the type and availability of sample data. If experts provide structured knowledge
of the control process, or if sufficient numerical training samples are unavailable, the fuzzy
approach may be preferable. We can construct a fuzzy control system with comparative
ease when experts or fuzzy engineers provide accurate structured knowledge. A fuzzy con:
trol system seems a reasonable benchmark in such cases, even if we can develop a neural
controller or math-model controller.

If we have representative numerical data but not structured expertise, the neural ap-
proach may be preferable. Or a statistical regression approach may be more appropriate.
The data simply tell their own story—if there is a story to tell. Yet even here we can
use a hybrid fuzzy-neural system, an adaptive fuzzy system. We can use the numerical
data to generate fuzzy associative memory (FAM) rules. The FAM rules can then form the
skeleton of a fuzzy control architecture. In short, if structured knowledge is uhavajlable,
estimate it. This may be more practical than it would appear because of the small number
of control FAM rules needed to reliably control many realworld processes.

How can we compare fuzzy and neural controllers? Abstract comparison proves difficult
because both approaches build a control black box in different ways. That they build black
boxes distinguishes them from math-model controllers. It also suggests we can compare
them, at least approximately, by their black-box control performance.

Each control system generated an output control surface as it ranged over the common
input space of parameter values. Figure 5 below shows three-dimensional control surfaces
for the fuzzy and neural controllers. For control systems with few input parameters with
moderately quantized ranges, we can store both fuzzy and neural controllers—or rather
their quantized control surfaces—as decision look-up tables. Then once we specify a system
performance criterion, we can in principle quantitatively compare the controllers.

Comparing system trajectories proved more complicated. In the case at hand, we
wanted to back up a truck, and truck-and-trailer, to a loading dock. We can measure and
compare the quality and quantity of the truck trajectory, perhaps with mean-squared er-
ror criteria. Intuitively, we preferred smooth short trajectories to jagged long trajectories.
Reaching the loading-dock goal was also important. In practice it is the most impor-

tant performance requirement. We must balance the trajectory type with the trajectory




destination, and this reduces to the pragmatic issue of balancing means and ends.

Below we develop a simple fuzzy control system and a simple neural control system
for backing up a truck, and truck-and-trailer, in an open parking lot. The recent neural
network truck backer-upper simulation of Nguyen and Widrow [1989] motivated our choice
of control problem.

The fuzzy control system compared favorably with the neural controller in terms of
black-box development effort, black-box computational load, smoothness of truck trajec-
tories, and robustness.

We studied robustness of the fuzzy control systems in two ways. We deliberately added
confusing FAM rules—“sabotage” rules—to the system, and we randomly removed differ-
ent subsets of FAM rules. We studied robustness of the neural controller by randomly
removing different portions of the training data in learning sequences. We also. converted

the neural control systems to structured FAM-bank systems.

Backing up a truck

Figure 2 shows the simulated truck and loading zone. The truck corresponds to the cab
part of the neural truck in the Nguyen-Widrow neural truck backer-upper system. The
three state variables ¢, z, and y exactly determine the truck position. ¢ specifies the angle
of the truck with the horizontal. The coordinate pair (z,y) specifies the position of the
rear center of the truck in the plane.

The goal was to make the truck arrive at the loading dock at a right angle (¢; = 90°)
and to align the position (z,y) of the truck with the desired loading dock (z;,ys). We
considered only backing up. The truck moved backward by some fixed distance at every
stage. The loading zone corresponded to the plane [0,100] x [0,100], and (z;,y;s) equaled
(50,100).

At every stage the fuzzy and neural controllers should produce the steering angle 6 that
backs up the truck to the loading dock from any initial position and from any angle in the

loading zone.
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FIGURE 2 Diagram of simulated truck and loading zone.

Fuzzy Truck Backer-Upper System

We first specified each controller’s input and output variables. The input variables were
the truck angle ¢ and the z-position coordinate z. The output variable was the steering-
angle signal §. We assumed enough clearance between the truck and the loading dock so

we could ignore the y-position coordinate. The variable ranges were as follows:

0<z<100 ,
—90 < ¢ <270
~30<6<30 .

Positive values of 8 represented clockwise rotations of the steering wheel. Negative values
represented counterclockwise rotations. We discretized all values to reduce computation.
The resolution of ¢ and 6 was one degree each. The resolution of z was 0.1.

Next we specified the fuzzy-set values of the input and output fuzzy variables. The
fuzzy sets numerically represented linguistic terms, the sort of linguistic terms an expert
might use to describe the control system’s behavior. We chose the fuzzy-set values of the

fuzzy variables as follows:




Angle ¢ z-position z Steering-angle signal §

RB: Right Below LE: Left NB: Negative Big
RU: Right Upper LC: Left Center NM: Negative Medium
RV: Right Vertical CE: Center NS: Negative Small
VE: Vertical RC: Right Center ZE: Zero

LV: Left Vertical RI: Right PS: Positive Small
LU: Left Upper PM: Positive Medium
LB: Left Below PB: Positive Big

Fuzzy subsets contain elements with degrees of membership. A fuzzy membership
function m4 : Z — [0,1] assigns a real number between 0 and 1 to every element z in
the universe of discourse Z. This number m4(z) indicates the degree to which the object
or data z belongs to the fuzzy set A. Equivalently, m 4(z) defines the fit (fuzzy unit) value
[Kosko, 1986] of element z in A.

Fuzzy membership functions can have different shapes depending on the designer’s pref-
erence or experience. In practice fuzzy engineers have found triangular and trapezoidal
shapes help capture the modeler’s sense of fuzzy numbers and simplify computation. Fig-
ure 3 shows membership-function graphs of the fuzzy subsets above. In the third graph,
for example, 8 = 20° is Positive Medium to degree 0.5, but only Positive Big to degree 0.3.

In Figure 3 the fuzzy sets CE, VE, and ZE are narrower than the other fuzzy sets.
These narrow fuzzy sets permit fine control near the loading dock. We used wider fuzzy
sets to describe the endpoints of the range of the fuzzy variables ¢, z, and 6. The wider
fuzzy sets permitted rough control far from the loading dock.

Next we specified the fuzzy “rulebase” or bank of fuzzy associative memory (FAM) rules.
Fuzzy associations or “rules” (A, B) associate output fuzzy sets B of control values with
input fuzzy sets A of input-variable values. We can write fuzzy associations as antecedent-
consequent pairs or [F-THEN statements.

In the truck backer-upper case, the FAM bank contained the 35 FAM rules in Figure 4.
For example, the FAM rule of the left upper block (FAM rule 1) corresponds to the following
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FIGURE 3  Fuzzy membership functions for each linguistic fuzzy-set value.
To allow finer control, the fuzzy sets that correspond to near the loading dock
are narrower than the fuzzy sets that correspond to far from the loading dock.

fuzzy association:

IF z = LE AND 4 = RB, THEN 6 = PS.

FAM rule 18 indicates that if the truck is in near the equilibrium position, then the
controller should not produce a positive or negative steering-angle signal. The FAM rules
in the FAM-bank matrix reflect the symmetry of the controlled system.

For the initial condition z = 50 and ¢ = 270, the fuzzy truck did not perform well.
The symmetry of the FAM rules and the fuzzy sets cancelled the fuzzy controller output in
a rare saddle point. For this initial condition, the neural controller (and truck-and-trailer
below) also performed poorly. Any perturbation breaks the symmetry. For example, the
rule (If z = 50 and ¢ = 270, then 6 = 5) corrected the problem.

The three-dimensional control surfaces in Figure 5 show steering-angle signal outputs
0 that correspond to all combinations of values of the two input state variables ¢ and
z. The control surface defines the fuzzy controller. In this simulation the correlation-
minimum FAM inference procedure, discussed in [Kosko, 1990a], determined the fuzzy

control surface. If the control surface changes with sampled variable values, the system
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FIGURE 4 FAM-bank matrix for the fuzzy truck backer-upper controller.
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FIGURE 5 (a) Control surface of the fuzzy controller. Fuzzy-set values
determined the input and output combination corresponding to FAM rule 2
(IF z=LC AND ¢=RB, THEN §=PM). (b) Corresponding control surface of

the neural controller for constant value y=20.




behaves as an adaptive fuzzy controller. Below we demonstrate unsupervised adaptive
control of the truck and the truck-and-trailer systems.

Finally, we determined the output action given the input conditions. We used the
correlation-minimum inference method illustrated in Figure 6. Each FAM rule produced
the output {uzzy set clipped at the degree of membership determined by the input condi-
tions and the FAM rule. Alternatively, correlation-product inference [Kosko, 1990a] would
combine FAM rules multiplicatively. Each FAM rule emitted a fit-weighted output fuzzy
set O; at each iteration. The total output O added these weighted outputs:

0 = Yo (1)
= Zmin(f,-,S.-) M .. (2)

where f; denotes the antecedent fit value and S; represents the consequent fuzzy set of
steering-angle values in the ith FAM rule. Earlier fuzzy systems combined the output
sets O; with pairwise maxima. But this tends to produce a uniform output set O as the
number of FAM rules increases. Adding the output sets O; invokes the fuzzy version of
the Central Limit Theorem. This tends to produce a symmetric, unimodal output fuzzy
set O of steering-angle values.

Fuzzy systems map fuzzy sets to fuzzy sets. The fuzzy control system’s output defines
the fuzzy set O of steering-angle values at each iteration. We must “defuzzify” the fuzzy
set O to produce a numerical (point-estimate) steering-angle output value 6.

As discussed in [Kosko, 1990a}, the simplest defuzzification scheme selects the value
corresponding to the mazimum fit value in the fuzzy set. This mode-selection approach
ignores most of the information in the output fuzzy set and requires an additional decision
algorithm when multiple modes occur.

Centroid defuzzification provides a more effective procedure. This method uses the

fuzzy centroid § as output:

) 8; mo(0;)
§ = = (3)
mo(9;)

j=1
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FIGURE 6 Correlation-minimum inference with centroid defuzzification
method. Then FAM-rule antecedents combined with AND use the minimum
fit value to activate consequents. Those combined with OR would use the
mazimum fit value.

where O defines a fuzzy subset of the steering-angle universe of discourse © = {6,,...,6,}.
The central-limit-theorem effect produced by adding output fuzzy set O; benefits both max-
mode and centroid defuzzification. Figure 6 shows the correlation-minimum inference and
centroid defuzzification applied to FAM rules 13 and 18. We used centroid defuzzification
in all simulations.

With 35 FAM rules, the fuzzy truck controller produced successful truck backing-up
trajectories starting from any initial position. Figure 7 shows typical examples of the fuzzy-
controlled truck trajectories from different initial positions. The fuzzy control system did
not use (“fire”) all FAM rules at each iteration. Equivalently most output consequent sets
are empty. In most cases the system used only one or two FAM rules at each iteration.

The system used at most 4 FAM rules at once.

Neural Truck Backer-Upper System

The neural truck backer-upper of Nguyen and Wid. w [1989] consisted of multilayer
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FIGURE 7 Sample truck trajectories of the fuzzy controller for initial
positions (z,y,¢): (a) (20,20,30), (b) (30,10,220), and (c) (30,40,—10).

feedforward neural networks trained with the backpropagation gradient-descent (stochastic-
approximation) algorithm. The neural control system consisted of two neural networks:
the controller network and the truck emulator network. The controller network produced
an appropriate steering-angle signal output given any parking-lot coordinates (z,y), and
the angle ¢. The emulator network computed the next position of the truck. The emulator
network took as input the previous truck position and the current steering-angle output
computed by the controller network.

We did not train the emulator network since we could not obtain “universal” synaptic
connection weights for the truck emulator network. The barkpropagation learning algo-
rithm did not converge for some sets of training samplcs. The number of training samples
for the emulator network might exceed 3000. For example, the combinations of training
samples of a given angle ¢, z-position, y-position, and steering angle signal § might cor-
respond to 3150 (18 x 5 x 5 x 7) samples depending on the division of the input-output
product space. Moreover, the training samples were numerically similar since the neuronal
signals assumed scaled valuesin [0,1] or [~1,1]. For example, we treated close values, such
as 0.40 and 0.41, as distinct sample values.

Simple kinematic equations replaced the truck emulator network. If the truck moved

I




backward from (z,y) to (2',3') at an iteration, then

' = z+rcos(d) , (4)
y = y+trsin(é) , ()
¢ = ¢+6 . (6)

r denotes the fixed driving distance of the truck for all backing movements. We used
equations (4)—(6) instead of the emulator network. This did not affect the post-training
performance of the neural truck backer-upper since the truck emulator network back-
propagated only errors.

We trained only the controller network with backpropagation. The controller network
used 24 “hidden” neurons with logistic sigmoid functions. In the training of the truck-
controller, we estimated the ideal steering-angle signal at each stage before we trained the
controller network. In the simulation, we used the arc-shaped truck trajectory produced
by the fuzzy controller as the ideal trajectory. The fuzzy controller generated each training
sample (z,y,d,0) at each iteration of the backing-up process. We used 35 training sample
vectors and needed more than 100,000 iterations to train the controller network.

Figure 5b shows the resulting neural control surface for y = 20. The neural control
surface shows less structure than the corresponding fuzzy control surface. This reflects
the unstructured nature of black-box supervised learning. Figure 8 shows the network
connection topology for our neural truck backer-upper control system.

Figure 9 shows typical examples of the neural-controlled truck trajectories from sev-
eral initial positions. Even though we trained the neural network to follow the smooth

arc-shaped path, some learned truck trajectories were non-optimal.

Comparison of Fuzzy and Neural Systems

As shown in Figure 7 and 9, the fuzzy controller always smoothly backed up the truck

but the neural controller did not. The neural-controlled truck sometimes followed an

irregular path.
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FIGURE 8 Topology of our neural control system.
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FIGURE 9 Sample truck trajectories of the neural controller for initial
positions (z,y,4): (2) (20,20,30), (b) (30,10,220), and (<) (30,40,-10).
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FIGURE 10 The fuzzy truck trajectory after we replaced the key steady-
state FAM rule 18 by the two worst rules: (a) IF z = CE AND ¢ = VE,
THEN § = PB, and (b) IF z = CE AND ¢ = VE, THEN 8 = NB.

Training the neural control system was time-consuming. The backpropagation algo-

rithm required thousands of back-ups to train the controller network. In some cases, the

learning algorithm did not converge.

We “trained” the fuzzy controller by encoding our own common sense FAM rules. Once
we develop the FAM-rule bank, we can compute control outputs from the resulting FAM-
bank matrix or control surface. The fuzzy controller did not need a truck emulator and
did not require a math model of how outputs depended on inputs.

The fuzzy controller was computationally lighter than the neural controller. Most
computation operations in the neural controller involved the multiplication, addition, or
logarithm of two real numbers. In the fuzzy controller, most computational operations

involved comparing and adding two real numbers.

Sensitivity Analysis

We studied the sensitivity of the fuzzy controller in two ways. We replaced the FAM

tules with destructive or “sabotage” FAM rules, and we randomly removed FAM rules.

14
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FIGURE 11  Fuzzy truck trajectory when (a) no FAM rules are removed
and (b) FAM rules 7, 13, 18 and 23 are removed.

We deliberately chose sabotage FAM rules to confound the system. Figure 10 shows the
trajectory when two sabotage FAM rules replaced the important steady-state FAM rule—
FAM rule 18: the fuzzy controller should produce zero output when the truck is nearly in
the correct parking position. Figure 11 shows the truck trajectory after we removed four
randomly chosen FAM rules (7, 13, 18, and 23). These perturbations did not significantly
affect the fuzzy controller’s performance.

We studied robustness of each controller by examining failure rates. For the fuzzy
controller we removed fixed percentages of randomly selected FAM rules from the system.
For the neural controller we removed training data. Figure 12 shows performance errors
averaged over ten typical back-ups with missing FAM rules for the fuzzy controller and
missing training data for the necural controller. The missing FAM rules and training data
ranged from 0 % to 100 % of the total. In Figure 12a, the docking error equaled the
Evclidean distance from the actual final position (¢, z, y) to the desired final position (¢;,

Ty, Yyr):

-J
~—

Docking Error = \/(:ﬁf - ¢+ (zy - )+ (yy —y) . (

In Figure 12b, the trajectory error equaled the ratio of the actual trajectory length of the
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FIGURE 12 Comparison of robustness of the controllers: (a) Docking and
Trajectory error of the fuzzy controller, (b) D-.cking and Trajectory error of
the neural controller.

truck divided by the straight line distance to the loading dock:

length of truck trajectory
distance(initial position, desired final position) -

Trajectory Error

Adaptive Fuzzy Truck Backer-Upper

(8)

Adaptive FAM (AFAM) systems generate FAM rules directly from training data. A

one-dimensional FAM system, § : I" — I?, defines a FAM rule, a single association of the

form (A;, B;). In this case the input-output product space equals I"™ x I?. As discussed in

[Kosko, 1990a], a FAM rule (A;, B;) defines a cluster or ball of points in the product-space

cube I™ X I? centered at the point (A;, B;). Adaptive clustering algorithms can estimate the
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unknown FAM rule (A;, B;) from training samples in R*. We used differential competitive
learning (DCL) to recover the bank of FAM rules that generated the truck training data.

We generated 2230 truck samples from 7 different initial positions and varying an-
gles. We chose the initial positions (20,20), (30,20), (45,20), (50,20), (55,20), (70,20), and
(80,20). We changed the angle from —60° to 240° at each initial position. At each step, the
fuzzy controller produced output steering angle 8. The training vectors (z, ¢, 8) defined
points in a three-dimensional product-space. z had 5 fuzzy set values: LE, LC, CE, RC,
and RI. ¢ had 7 fuzzy set values: RB, RU, RV, VE, LV, LU, and LB. 8 had 7 fuzzy set
values: NB, NM, NS, ZE, PS, PM, and PB. So there were 245 (5 x 7 x 7) possible
FAM cells.

We defined FAM cells by partitioning the effective product-space. FAM cells near the
center were smaller than outer FAM cells because we chose narrow membership functions
near the steady-state FAM cell. Uniform partitions of the product-space produced poor
estimates of the original FAM rules. As in Figure 3, this reflected the need to judiciously
define the fuzzy-set values of the system fuzzy variables.

We performed product-space clustering with the version of DCL discussed in [Kosko,
1990a]. If a FAM cell contained at least one of the 245 synaptic quantization vectors, we
entered the corresponding FAM rule in the FAM matrix.

Figure 13a shows the input sample distribution of (z,$). We did not include the
variable 6 in the figure. Training data clustered near the steady-state position (z = 50
and ¢ = 90°). Figure 13b displays the synaptic-vector histogram after DCL classified 2230
training vectors for 35 FAM rules. Since successful FAM system generated the training
samples, most training samples, and thus most synaptic vectors, clustered in the steady-
state FAM cell.

DCL product-space clustering estimated 35 new FAM rules. Figure 14 shows the DCL-
estimated FAM bank and the corresponding control surface. The DCL-estimated control
surface visually resembles the underlying unknown control surface in Figure 5a. The two
systems produce nearly equivalent truck-backing behavior. This suggests adaptive product-
space clustering can estimate the FAM rules underlying expert behavior in many cases,

even when the expert or fuzzy engineer cannot articulate the FAM rules.
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FIGURE 13
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(b) Synaptic-vector histogram

(2) Input data distribution, (b) Synaptic-vector histogram.
Differential competitive learning allocated synaptic quantization vectors to
FAM cells. The steady-state FAM cell (CE, VE; ZE) contained the most

synaptic vectors.

{a) DCL-estimated FAM bank. (b) Corresponding control
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FIGURE 15 (a) FAM bank generated by the neural control surface in
Figure 5b. (b) Control surface of the neural BP-AFAM system in (a).

We also used the neural control surface in Figure 5b to estimate FAM rules. We divided
the input-output product-space into FAM cells as in the fuzzy control case. If the neural
control surface intersected the FAM cell, we entered the corresponding FAM rule in a FAM
bank. We averaged all neural control-surface values in a square region over the two input
variables z and ¢. We assigned the average value to one of 7 output fuzzy sets. Figure 15
- shows the resulting FAM bank and corresponding control surface generated by the neural
control surface in Figure 5b. This new control surface resembles the original fuzzy control
surface in Figure 5a more than it resembles the neural control surface in Figure 5b. Note
the absence of a steady-state FAM rule in the FAM matrix in Figure 5a.

Figure 16 compares the DCL-AFAM and BP-AFAM control surfaces with the fuzzy
control surface in Figure 5a. Figure 16 shows the absolute difference of the control surfaces.
As expected, the DCL-AFAM system produced less absolute error than the BP-AFAM
system produced.

Figure 17 shows the docking and trajectory errors of the two AFAM contrac! systems.
The DCL-AFAM system produced less docking error than the BP-AFAM system produced
for 100 arbitrary backing-up trials. The two AFAM systems generated similar backing-up

trajectories. This suggests that black-box neural estimators can defir. : the front-end of
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(b)

(a)

(a) Absolute difference of the FAM surface in Figure 5a and

the DCL-estimated FAM surface in Figure 14b. (b) Absolute difference of the

FIGURE 16

FAM surface in Figure 5a and the neural-estimated FAM surface in Figure 15b.
FAM-structured systems. In principle we can use this technique to generate structured

FAM rules for any neural application. We can then inspect and refine these rules and
Fuzzy Truck-and-Trailer Controller

perhaps replace the original neural system with the tuned FAM system.

We added a trailer to the truck system, as in the original Nguyen-Widrow model.

Figure 18 shows the simulated truck-and-trailer system. We added one more variable (cab
angle, ¢.) to the three state variables of the trailerless truck. In this case a FAM rule takes

the form

= NS.

THEN B

= PO,

— RB AND ¢.

IF z = LE AND ¢,

and-trailer

and ¢, determined the position of the truck-

¢t’

system in the plane. Fuzzy variable

The four state variables z, y,

corresponded to ¢ for the trailerless truck. Fuzzy

b
variable ¢, specified the relative cab angle with respect to the center line along the trailer.

¢. ranged from —90° to 90°. The extreme cab angles 90° and —90° corresponded to two
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FIGURE 17 (a) Docking errors and (b) Trajectory errors of the DCL-
AFAM and BP-AFAM control systems.
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x.y) (x , ¥) : Carteslan coordinate of the rear end, (0,100].
(u , v) : Carteslan coordinate of the jolat.

¢, : Angle of the trailer with horizontal, (0,360).
.. : Relative angle of the cab with tralier, (-90,90).
0 : Steering angle, [-30,30).

B : Angle of the tralier updated at each step, [-30,30).

FIGURE 18  Diagram of the simulated truck-and-trailer system.

“jackknife” positions of the cab with respect to the trailer. Positive ¢, value indicated
that the cab resided on the left-hand side of the trailer. Negative value indicated that it
resided on the right-hand side. Figure 18 shows a positive angle value of ¢..

Fuzzy variables z, ¢;, and ¢. defined the input variables. Fuzzy variable 8 defined the
output variable. 3 measured the angle that we needed to update the trailer at each itera-
tion. We computed the steering-angle output § with the following geometric relationship.

With the output 8 value computed, the trailer position (z,y) moved to the new position
(=, v):
' = z+rcos(d+p), (9)
v = y+rsin(é +f), (10)
where r denotes a fixed backing distance. Then the joint of the cab and the trailer (u,v)
moved to the new position (u/,7'):
v = z' — Lcos(¢: + B), (11)
v' = ¢ —{sin(¢ + B), (12)
where £ denotes the trailer length. We updated the directional vector (dirU,dirV), which
defined the cab angle, by
dirU' = dirU + Au, (13)
dirV' = dirV + Av, (14)
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FIGURE 19 Membership graphs of the three fuzzy-set values of fuzzy
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FIGURE 20 FAM bank of the fuzzy truck-and-trailer control system.

where Au = v’ — u, and Av = v — v. The new directional vector (dirU’,dirV’) defines
the new cab angle ¢.. Then we obtain the steering angle value as § = ¢/, — @.», where
@cn denotes the cab angle with the horizontal. We chose the same fuzzy-set values and
membership functions for 3 as we chose for 8. 8 ranged from —30° to 30°. We chose the
fuzzy-set values of ¢. as NE, ZR and PO as in Figure 19.

Figure 20 displays the § FAM-rule matrices in the FAM bank of the fuzzy truck-and-
trailer system. In Figure 20 we fixed the fuzzy variable z as LE, LC, CE, RC, and RI.
There were 735 (7 x 5 x 7 x 3) possible FAM rules and only 105 actual FAM rules.

Figure 21 shows typical backing-up trajectories of the fuzzy truck-and-trailer control
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FIGURE 21 Sample truck-and-trailer trajectories from the fuzzy con-
troller for initial positions (z, y, ¢ ¢:): (2) (25, 30, —20, 30), (b) (80, 30,
210, —40), and (<) (70, 30, 200, 30).

system from different initial positions. The truck-and-trailer backed up in different direc-
tions depending on the relative position of the cab with respect to the trailer. The fuzzy

control systems successfully controlled the truck-and-trailer in jackknife positions.

BP Truck-and-Trailer Control Systems

We added the cab-angle variable ¢, as to the backpropagation-trained neural truck con-
troller as an input. The controller network contained 24 hidden neurons with output vari-
able B. The training samples consisted of 5-dimensional space of the form (z,y, ¢, ¢, 8).
We trained the controller network with 52 training samples from the fuzzy controller: 26
samples for the left half of the plane, 26 samples for the right half of the plane. We
used equations (9)-(14) instead of the emulator network. Training required more than
200,000 iterations. Some training sequences did not converge. The BP-trained controller
performed well except in a few cases. Figure 22 shows typical backing-up trajectories of
the BP truck-and-trailer control system from the same initial positions used in Figure 21.

We performed the same robustness tests for the fuzzy and BP-trained truck-and-trailer

controllers as in the trailerless truck case. Figure 23 shows performance errors averaged
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FIGURE 22 Sample truck-and-trailer trajectories of the BP-trained con-
troller for initial positions (z, ¥, ¢¢, ¢¢): (a) (25, 30, —20, 30), (b) (80, 30, 210,
—40), and (<) (70, 30, 200, 30).

over ten typical back-ups from ten different initial positions. These performance graphs

resemble closely the performance graphs for the trailerless truck systems in Figure 12.

AFAM Truck-and-Trailer Control Systems

We generated 6250 truck-and-trailer data using the original FAM system in Figure 20.
We backed up the truck-and-trailer from the same initial positions as in the trailerless truck
case. The trailer angle ¢, ranged from —60° to 240°, and the cab angle ¢. assumed only
the three values —45°, 0°, and 45°. The training vectors (z, ¢, ¢., B) defined points in the
four-dimensional input-output product-space. We nonuniformly partitioned the product
space into FAM cells to allow narrower fuzzy-set values near the steady-state FAM cell.

We used DCL to train the AFAM truck-and-trailer controller. The total number of FAM
cells equaled 735 (7 x 5 x 7 x 3). We used 735 synaptic quantization vectors. The DCL
algorithm classified the 6250 data into 105 FAM cells. Figure 24 shows the synaptic-vector
histogram corresponding to the 105 FAM rules. Figure 25 shows the estimated FAM bank
by the DCL algorithm. Figure 26 shows the original and DCL-estimated control surfaces

for the fuzzy truck-and-trailer systems.
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FIGURE 23 Comparison of robustness of the two truck-and-trailer con-
trollers: (a) Docking and trajectory error of the fuzzy controller, (b) Docking
and trajectory error of the BP controller.
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FIGURE 24  Synaptic-vector histogram for the AFAM truck-and-trailer
system.
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FIGURE 25 DCL-estimated FAM bank for

system.

the AFAM truck-and-trailer

Figure 27 shows the trajectories of the original FAM and the DCL-estimated AFAM

truck-and-trailer controllers. Figure 27a and 270 show the t{wo trajectories from the initial
position (z, y, ¢:, ¢.) = (30,30,10,45). Figure 27c and 27d show the trajectories from
initial position (60,30,210,—60). The original FAM and DCL-estimated AFAM systems

exhibited comparable truck-and-trailer control performance except in a few cases, where

the DCL-estimated AFAM trajectories were irregular.
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(b) DCL-estimated control surfaces for the truck-and-trailer system

FIGURE 26 (a) Original control surface (b) DCL-estimated control surface

28




{c) Orlginal FAM (d) DCL-estimated FAM

FIGURE 27 Sample truck-and-trailer trajectories from the original and
the DCL-estimated FAM systems starting at initial positions (z, y, ¢, ¢.) =
(30,30,10,45) and (60,30,210,—60).

Conclusion

We quickly engineered fuzzy systems to successfully back up a truck and truck-and-
trailer system in a parking lot. We used only comnon secse and error-nulling intuitions
to generate sufficient banks of FAM rules. These systems performed .l until we removed
over 50 % of the FAM rules. This extreme robustness suggests that, for many estimation
and control problems, different fuzzy engineers can rapidly develop prototype fuzzy systems
that perform similarly and well.

The speed with which the DCL clustering technique recovers the underlying FAM bank
further suggests that we can likewise construct fuzzy systems for more complex, higher-
dimensional problems. For these problems we may have access to only incomplete numer-
ical input-output data. Pure neural-network or statistical-process-control anproaches may
generate systems with comparable performance. But these systems will involve far greater

computational effort, will be mere difficult to modify, and will not provide a structured




representation of the system’s throughput.

Our neural experiments suggests that when=ver we model a system with a neural net-
work, for little extra computational cost we can generate a set of structured FAM rules that
approximate the neural system’s behavior. We can then tune the fuzzy system by refining

the FAM-rule bank with fuzzy-engineering rules of thumb and with further training data.
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APPENDIX: Product-space Clustering with Differential

Competitive Learning

Product-space clustering [Kosko, 1990a] is a form of stochastic adaptive vector quanti-
zation. Adaptive vector quantization (AVQ) systems adaptively quantize pattern clusters
in R". Stochastic competitive learning systems are neural AVQ systems. Neurons compete
for the activation induced by randomly sampled patterns. The corresponding synaptic fan-
in vectors adaptively quantize the pattern space R®. The p synaptic vectors m; define the
p columns of the synaptic connection matrix M. M interconnects the n input or linear
- neurons in the input neuronal field Fx to the p competing nonlinear neurons in-the output
field Fy. Figure 28 below illustrates the neural network topology.

Learning algorithms estimate the unknown probability density function p(x), which de-
scribes the distribution of patterns in R™. More synaptic vectors arrive at more probable
regions. Where sample vectors x are dense or sparse, synaptic vectors m; should be dense
or sparse. The local count of synaptic vectors then gives a nonparametric estimate of the

volume probability P(V) for volume V C R™:

P(V) = [ p(x)dx (15)

€V
Number of m; € . (16)
p

~

In the extreme case that V = R", this approximation gives P(V) = p/p = 1. For improb-
able subsets V, P(V) =0/p = 0.
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Stochastic Competitive Learning Algorithms

The metaphor of competing ncurons reduces to nearest-neighbor classification. The
AVQ system compares the current vector random sample x(t) in Euclidean distance to the
p columns of the synaptic connection matrix M, to the p synaptic vectors my(t),..., my(t).
If the jth synaptic vector mj(t) is closest to x(t), then the jth output neuron “wins” the
competition for activation at time ¢. In practice we sometimes define the nearest N synaptic
vectors as winners. Some scaled form of x(t) — m;(t) updates the nearest or “winning”
synaptic vectors. “Losers” remain unchanged: m;(t + 1) = m;(t). Competitive synaptic
vectors converge to pattern-class centroids exponentially fast [Kosko, 1990b)].

The following three-step process describes the competitive AVQ algorithm, where the

third step depends on which learning algorithm updates the winning synaptic vectors.
Competitive AVQ Algorithm

1. Initialize synaptic vectors: my(0) = x(3), i=1,...,p.
Sample-dependent initialization avoids many pathologies that can distort nearest-

neighbor learning.
2. For random sample x(t), find the closest or “winning” synaptic vector m;(t):
fmi(¢) —x(@ll = minfimi(t) - x(@) , (17)

where [|x||2 = 2% + -- - + 22 defines the squared Euclidean vector norm of x. We can

define the N synaptic vectors closest to x as “winners”.

3. Update the winning synaptic vector(s) m;(t) with an appropriate lcarning algorithm.
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Differential competitive learning (DCL)

Differential competitive “synapses” learn only if the competing “neuron” changes its

competitive status [Kosko, 1990c|:
my = Si(yy) [Si(=) —mii] (18)
or in vector notation,
m; = Sj(y;) [S(x)—m;] (19)

where S(x) = (51(21),-..,5a(2a)) 2nd m; = (mj,...,mn;). mi; denotes the synaptic
weight between the ith neuron in input field Fx and the jth neuron in competitive field
Fy. Nonnegative signal functions S; and S; transduce the real-valued activations z; and
y; into bounded monotone nondecreasing signals S;(z;) and S;(y;). 7u; and S;(y;) denote
the time derivatives of m;; and S;(y;), synaptic and signal velocities. S;(y;) measures the
competitive status of the jth competing neuron in Fy. Usually S; approximates a binary
threshold function. For example, S; may equal a steep binary logistic sigmoid,

1

1+ e v (20)

Si(y;) =

for some constant ¢ > 0. The jth neuron wins the laterally inhibitive competition if §; = 1,
loses if S; = 0.
For discrete implementation, we use the DCL algorithm as a stochastic difference equa-

tion [Kong, 1991]:

m;(t + 1) m;(t) + ¢ AS;(y;(t)) [ S(x(¢)) — mj(t) ] if the jth neuron wins, (21)

Il

m;(t+1) = my(t) if the ith neuron loses. (22)

AS;(y;(t)) denotes the time change of the jth neuron’s competition signal S;(y;) in the

competitive field Fy:
ASi(yi(t)) = sgn[Si(yi(t+1)) - Si(v;(t))] - (23)
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We define the signum operator sgn(z) as

1 if z>0
sgn(z) = 0 if z=0 . (24)
-1 if z <0

{c:} denotes a slowly decreasing sequence of learning coefficients, such as ¢; = .1 (1 —
t/2000) for 2000 training samples. Stochastic approximation [Huber, 1981] requires a de-
creasing gain sequence {c;} to suppress random disturbances and to guarantee convergence

to local minima of mean-squared performance measures. The learning coefficients should

decrease slowly,
Yo = oo (25)
but not too slowly,

Yok < o . (26)

Harmonic-series coefficients, ¢, = 1/t, satisfy these constraints.

We approximate the competitive signal difference AS; as the activation difference Ay;:

ASi(y;(t)) = sen[yi(t+1) — wi(t)] (27)

= ij(t) . (28)

Input neurons in feedforward networks usually behave linearly: Si(z;:) = z;, or S(x(t)) =

x(t). Then we update the winning synaptic vector m;(t) with
m;(t+1) = m;(t) +c Ay;(t) [x(¢) — my(t)] - (29)
We update the Fy ncuronal activations y; with the additive model

BE+1) = 5) + S SEW) m®) + Y Suw®)wg - (30)
H k
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Input field Fy Competition ficld FY

FIGURE 28 Topology of the laterally inhibitive DCL network.

For linear signal functions S;, the first sum in (30) reduces to an inner product of sample

and synaptic vectors:

Y @) mu(t) = xT(8) my(t) - (31)

‘Then positive learning tends to occur—Am;; > 0-—when X is close to the jth synaptic

vector m j

Since a binary threshold function approximates the output signal function Si(yi), the

second sum in (30) sums over just the winning neurons: )  wy; for all winning neurons yi .

k
The p x p matrix W contains the Fy within-field synaptic connection strengths. Di-
agonal elements w;; are positive, off-diagonal elements negative. Winning neurons excite
themselves and inhibit all other neurons. Figure 28 shows the connection topology of the

laterally inhibitive DCL network.
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Product-space clustering

We divided the space 0 < z < 100 into five nonuniform intervals [0, 32.5], [32.5,47.5],
(47.5,52.5], [52.5,67.5], and [67.5,100]. Each interval represented the five fuzzy-set values
LE, LC, CE, RC, and RI. This choice corresponded to the nonoverlapping intervals
of the fuzzy membership function graphs m(z) in Figure 3. Similarly, we divided the
space —90 < ¢ < 270 into seven nonuniform intervals [-90, 0], [0,66.5], [66.5, 86], (86, 94],
[94,113.5], [113.5,182.5], and {182.5,270], which corresponded respectively to RB, RU,
RV,VE, LV, LU, and LB. We divided the space —30 < § < 30 into seven nonuniform
intervals [—30, —20], [-20, —7.5], [~7.5, —2.5], [2.5,2.5], [2.5,7.5), [7.5,20], and [20,30],
which corresponded to NB, NM, NS, ZE, PS, PM, and PB.

DCL classified each input-output data vector into one of the FAM cells. We added a
FAM rule to the FAM bank if the DCL-trained synaptic vector fell in the FAM cell. In
case of ties we chose the FAM cell with the most densely clustered data.

For the BP-AFAM generated from the neural control surface in Figure 15, we divided
the rectangle [0,100] x [—90,270] into 35 nonuniform squares with the same divisions
defined above. Then we added and averaged the control surface values in the square. We
added a FAM rule to the FAM bank if the averaged value corresponded to one of the seven
FAM cells.

For the truck-and-trailer case, we divided the space —90 < ¢. < 90 into three intervals
[-90, —12.5], [-12.5,12.5], and [12.5,90], which corresponded to NE, ZR, and PO. There
were 735 FAM cells, and 735 possible FAM rules, of the form (z, ¢, ¢.; B).
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Differential Competitive Learning for Centroid Estimation and Phoneme
Recognition

SEONG-GON KONG anv BART KOSKO
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Abstract—We compared a differential competitive learning (DCL)
system with two supervised competitive learning (SCL) systems for
centroid estimation and phanceme recognition. DCL provides a new
form of unsupervised adaptive vector guantization. Standard stochas-
tic competitive learning systems learn oanly if neurons win a competi-
tion for activation induced by randomly sampled patterns. DCL sys-
tems learn only if the competing neurons change their competitive
signal. Signal-velocity information provides unsupervised local rein-
Jorcement during learning. The sign of the ncuronal signal derivative
rewards winners and punishes losers. Standard competitive learning
ignores instantaneous win-rate information. Synaptic fan-in vectors
adaptively quantize the randomly sampled pattern space into nearest-
neighbor decision classes. More generally, the synaptic vector distri-
bution estimates the unknown sampled probability density function
p(x). Simulations showed that unsupervised DCL-trained synaptic
vectors converged to class centroids at least as fast as, and wandered
less about . these centroids than, SCltrained synaptic vectors. Simula-
tions on a small set of English phonemes favored DCL over SCL for

classification accuracy.

I. ADAPTIVE VECTOR QUANTIZATION FOR PHONEME
RECOGNITION

HONEME recognition is a simple form of speech rec-

ognition. We can recognize a speech sample phoneme
by phoneme. The phoneme recognition system leams only
a comparatively small set of minimal syllables or pho-
nemes. More advanced systems leam and recognize
words, phrases, or sentences. There are orders of mag-
nitude more  such speech units thzn phonemes. Words
and phrases can also undergo more complex forms of dis-
tortion and time warping.

In principle, we can recognize phonemes and speech
with vector quantization methods. These methods search
for a small but representative set of prototypes, which we
can then use to match sample patterns with ncarest-neigh-
bor techniques.

In neural network phoneme recognition, a sequence of
discrete phonemcs from a continuous speech sample pro-
duces a series of ncuronal responses. Kohonen’s [4] su-
pervised ncural phoneme recognition system successfully
classifies 21 Finnish phonemes. This stochastic competi-
tive learning system behaves as an adaptive vector quan-
tization system.
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Traditional vector quantization sysicms may attempt 1o
minimize a mean-squared-error or entropic performance
mecasure. Formal minimization assumes knowledge of the
sampled probability density function p(x) and perhaps
additional knowledge of how some parameters function-
ally depend on other parameters. p(x) describes the con-
tinuous distribution of patterns in R". In general, we do
not know this probabilistic information. lnstead, we use
learning algorithms to adaptively estimate p(x) from
sample realizations. This procedure often reduces to sfo-
chastic approximation 11}, [12].

Adaptive vector quantization (AVQ) systems adap-
tively quantize pattern clusters in R”. Stochastic compet-
itive leaming systems are neural AVQ systems. Neurons
compete for the activation induced by randomly sampled
patterns. The corresponding synaptic fan-in vectors adap-
tively quantize the pattern space R". The p synaptic vec-
tors m; define the p columns of the synaptic connection
matrix M. M interconnects the n input or linear neurons
in the input neuronal field F to the p competing nonlinear
neurons in the output field Fy.

In the simplest case. the p synaptic vectors estimate
centroids or modes of the sampled probability density
function p(x). The estimates are nonparametric. The user
need not know or assume which probability density func-
tion p (x ) generates the training samples. the observed real-
izations of the underlying stochastic pattemn process.

Pattern leaming is supervised if the system uses_pat-
tern-class information. Suppose the k decision classes
{ D, } partition the pattern space R™

%
R":,-EJ;DJ and D, D =@ ifi =4 (1)
The system knows and uses the class membership of cach
pattern x. The system knows that x € D, and that x ¢ D,
forallj # (. Pattern lcaming is unsupervised if the system
does not know or use class membership information. Un-
supervised leaming algorithms use unlabeled pattern sam-
ples.
Formally supervised lcaming depends on class indica-
tor functions { I, }+

I ifxeD,
0 ifxgD,

’1),(1’) = (2)

Ij), indicates whether pattern x belongs to decision class
D,. Unsupervised learning algorithms bhindly cluster sam-
ples. They do not depend on class indicator functions.
The random indicator tunctions define the class probabil
ities P(D,), -+ - . P(D). sinee




Pw) = | peo)ar ()
= | 10 p)ar (4)
= E“o,]- (5)

E[x] denotes the mathematical expectation of scalar ran-
dom variable x. The partition property and P(R") = |
imply P(D)) + - - - + P(D;) = 1.

Leaming algorithms estimate the unknown probability
density function p(x). We need not learn if we know
p(x). Instead, we could compute the desired quantities
with optimization, numencal-analytical, or calculus-of-
variation techniques. For instance, we could directly
compute the centroids X; of the pattem classes D;. The
centroids minimize the total mean-squared-crror of vector
quantization &,

&=1 IZ go Z'; (xi = ’".j)zP(I) dx. (6)

For if we set the gradient vector V,, & equal to the null
vector and solve for the optimal rir;, we get

0=9,¢ (7

|, = i) o) a ®)

L xp(x) dx — sy, qu(x) de.  (9)

Then
S xp(x) dx
D,
W, = —————— (10)
}, pie)
=X, (11)

as claimed (when positive-definite Hessian conditions
hold).

Mecan-squared-error optimal learning drives synaptic
vectors to the unknown centroids ¥, of the locally sampled
pattern classes. More gencrally (8], Elm,] = X, holds
asymptotically as the random synaptic vector m, wanders
in a Brownian motion about the centroid x,. We obscrved
this Brownian wandering in the simulations discussed be-
low (Fig. 6).

If there are exactly p distinet pattern classes or clusters,
the p synaptic row vectors m(r), - - - . m, (1) should
asymptotically approach the centroid of a distinct pattern
class. In general, we do not know the number & of pattern
classes. If there are fewes synaptic vectors than the num-
ber & of pattern classes. if p < A, the synaptic vectors
should approach the centroids of the p most massive, most
probable patern clusters.

It p > k, the synaptic vectors should approximate the
catire density function p(x). Morc synaptic vectors
should arrive at more probable regions. Where pattems x
arz dense or sparse, synaptic vectors m; should be dense
or sparsc. The local count of synaptic vectors then gives
an accurate nonparamectric estimate of the volume prob-
ability P(V) for volume V C R":

Pvy = | pex) dr (12)

number of m; € V
~ (13)
P
In the extreme case that V = R”, this approximation gives
P(V) = p/p = 1. For small or improbable subsets V,
P(V)y=0/p =0.

Differential competitive leaming (DCL) provides a new
[7] unsupervised form of AVQ. DCL modifies stochastic
synaptic vectors with a competing neuron’s change in
output signal. The neuronal signal velocity locally rein-
forces the synaptic vector. The time dertvative’s sign
changes resemble the supervised sign changes in super-
vised competitive leaming (SCL) algorithms. SCL sys-
tems use more information than DCL systems, since sig-
nal velocities do not depend on class-membership
information. In particular, the DCL algorithm in (40) be-
low does not use the class membership of the training
sample x.

Both DCL-trained and SCL-trained synaptic vectors
tend to rapidly converge to pattern-class c2ntroids {8). Our
simulated DCL synaptic vectors conver.ed faster to bi-
polar centroids—points iu { ~1, 1 }"—than did SCL syn-
aptic vectors when, as in biological r..ural networks, a
sigmoidal signal function nonlinearly transduced neuronal
activations to bounded signals. DCL systems exploit a
win-rate dependent sequence of learning coefficients.” The
faster the neuron wins or loses, the more the synaptic vec-
tor resembles or disresembles the sampled pattern. SCL
systems ignore this instantaneous rate information.

In practice, input neurons have linear signal functions:
Si (x;) = x;. The user presents the random sample x to the
system as the output of the Fy neurons. In this case, our
simulated DCL and SCL synaptic vectors converged
equally quickly. But the DCL-trained synaptic vectors
wandered less about class centroids than did SCL-trained
synaptic vectors.

[I. StocHAsTiC COMPETITIVE LEARNING ALGORITHMS

Autoassociative AVQ ncural networks are two-layer
feedforward nctworks trained with competitive learning.
The input ncuronal field Fy receives the sample data and
passcs it forward through syniaptic conneclion matrix
M 10 the p competing neurons in ficld Fy. (Heteroassocia-
tive AVQ networks correspond to three-layer feedforward
networks.) Synchronous fecdforward flow obviates the
ncural interpretation. AVQ ncural systems are sunply sig-
nal processing algonithms,




The metaphor of competing neurons reduces o a hear-
est-ncighbor classification. The system compares the cur-
rent vector random sample x () in Euchidean distance to
the p columns of the synaptic connection matrix M. to the
p synaptic vectors m (1), - - - L (1), 1 the jth synaptic
vector i, (1) 1s closest to x (7)., then the jth ncuron ““wins™’
the competition for activation at time 1.

Many within-field feedback dynamical sysiems approx-
imate this ncarest-ncighbor, winner-take-all  behavior.
Mathematically. the jth competing ncuron should behave
as a class indicator funcuon:§, = 1. More generally, the
Jth F. ncuron only estimates /. Then misclassification
can still occur: S, (xm,r + £) = 1 but Ip, (x) = G for row
vectors x and m;, where f; denotes the inhibitive within-
field feedback the jth ncuron receives.

We modify the nearest or **winning®’ synaptic vector
m; with a simple difference learning law. We add some
scaled form of x(r) — m; (1) to m; (1) to form m; (1 +
1). We can also update near-neighbors of the winning
neuron. In practice, and in the simulations below, we
modify only one synaptic vector at a time. We do not
modify *‘losers™sm; (¢t + 1) = m, (1).

The stochastic unsupervised competitive learning
(UCL) algornithm represents the simplest competitive
learning algorithm. Pattem recognition theorists first
studied the UCL algorithm but called it adaptive K-means
clustering [10]. Kohonen extended the UCL algorithm to
two supervised versions, SCL1 [3], [4]) and SCL2 {5].
The supervisor must know the class membership of each
sample pattern x. The SCL1 and STL2 algorithms lin-
carly “‘reward’’ correct classifications as in the UCL al-
gorithm. They ‘‘punish’’ incorrect classifications with a
sign change. We obtain all three algorithms from the fol-
lowing three-step algorithm if we replace the third step
with the appropniate stochastic difference equation.

A. Competitive AV(Q Algorithms
1) Initialize synaptic vectors:m; (0) = x(i), i = 1,
, p. Sample-dependent initialization avoids many
pathologies that can distort nearest-neighbor leaming.
2) For random sample x (1), find the closest or ‘*win-
ning” synaptic vector m, (f):

“m/(t) - x(t)" = min ”m,(l) - x(t)“ , (14)
where lxll = a7 + + x, defines the squared Eu-
chdean vector norm of x.

3) Update the winning synaptic vector m, (1) with the
UCL. SCLI. or SCL2 leaming algorithm.

B. Unsupervised Competitive Learning (UCL)
m, (1 + 1) = m,(r) + (',l.r(l) - m,(l)] , (15)

m (04 1) = om, (1) Wity (10)

where (¢} denotes o slowly decreasing sequence of
lcarming coctherents. In our simulations. ¢, = 0. 1(1

(1/20001) tor 2000 training samples. The UCL algorithm
(15) restates the classical adaptive K-means clustering al-

vorithm

Stochastic approximation {11] requires a decreasine
gain sequence { ¢, } to suppress random disturbances and
10 guarantee convergence 1o a local minima of mean-
squared perfonmance measures. The leaming cocflicients
should decrease slowly.

8

n
0
8

~a

(17)

but not 100 slowly,

N 8

~ s

¢ < oo. (18)

(=1

Hannomc-senies coefficients ¢, = 1 /1 satisfy these con-
straints. For fast robust (2] stochastic approximation, only
the harmonic-series coefficients satisfy these constraints.

C. Supervised Competitive Learning 1 (SCL1)

m (1) + ¢[x(1) - m; (1)]

ifx(1) e D
i+ 1) = : !
" m (1) — ¢fx(r) - m,(1)] (19)
ifx(s)¢ D;
m(t + 1) = m;(1) ifi # j. (20)

SCLY1 supervises or reinforces synaptic modification. m;
learns positively if the system correctly classifies the ran-
dom sample x. m; leams negatively, or forgets selec-
tively, if the system misclassifies the random sample.
Then m; tends to move out of regions of misclassifi-
cation in R”. Tsypkin [12] first derived the SCL1 algo-
rithm as a special case of his adaptive Bayes classifier.

We can rewrite the SCL1 update equation (19) as

mi(t + 1) = m(t) + c,rj(x(r)) [x(r) - m;(1)] (21)
if we define the supervised reinforcemeni Junction r; as

r=1Ip ~ 2 Ip. (22)
l:]

r; depends explicitly on class indicator functions. r; re-
wards correct pattern classifications with +1 and pun-
ishes misclassifications with —1. We implicitly assume
the jth neuron accurately estimates the Jth indicator func-
tion:S; (xij +f) = Ip (x).

The SCL2 algorithm slightly modifies the SCL1 algo-
rithm. The SCL2 algorithm better estimates the optimal
Bayes decision-theoretic boundary in some cases. The
Baycs decision boundary minimizes the misclassification
error. [t represents the crossing point of the unknown con-
ditionai densities p(x | D,) and p(x | D).

The nearest-neighbor decision boundary corresponds to
the hyperplane that bisccts the line that connects the two
class centroids. If the pattern distribution is asymmetric —
if. for anstance, local deasity functions with different
variances generate differeny decision classes—then the
SCLI decision boundary may not resemble the Baves de-
ciston boundary . Nearest-neighbor classification tends to
perform better in the equal variance case than in the un-
cqual variance case.




D. Supervised Competitive Learning 2 (SCL2)
=m, (1) ~ ¢|x(r) — m,0)] , (23)
m(s + 1) = m (1) + ¢lx(1) = m (1)) . (24)

ifx € D, instcad of x € D,. and if m, (1) 15 the nearest
synaptic vector and m, (1) is the next-to-nearest synaptic
vector ©

m (1 + 1)

"Illl(l) - .r(t)" < ”m,(l) - x(r)”

= mjn ”m,(r) - x(l)” ; (25)

.

and if x(7) falls in a class-dependent **window.*" In all

other cases,
(26)

The window defines a hyperrectangle in R” centered at
the midpoint of the hyperline that connects the centroids
of D; and D,. If x(t) does not fall in the hyperwindow,
we modify no synaptic vector. We defined the R™ window
between D; and D, as the n-dimensional hyperrectangle
(m —d,m +d} x --- X|m, —d,m, + d], where
m;; denotes the midpoint m;; = (m,, - - - ,m,) = (m; +
m;) /2, and d denotes the window half-width. We put 4
=2.5.

m; (1 + 1) = m(1).

III. DiFFEReNTIAL COMPETITIVE LEARNING

The differential competitive learning (DCL) law (7]
combines competitive and differential Hebbian leaming:

m; = S,(y,) [Si(xi) - mij] ) (27)
or in vector notation, '
;= 5(y) [S(x) — m] | (28)

where S(x) = (§(x,), - - -, S.(x,)) and m; = (my;,
-+, m,). m; denotes the synaptic weight between the
ith neuron in input neuronal field Fy and the jth neuron in
competitive field Fy. Nonnegative signal functions S; and
S, transduce the real-valued activations x; and y; into the
bounded monotone nondecreasing signals §; (x;) and
S; (y;)- 1, and §; ( y;) denote the time derivatives of m;;
and S, (y,). synaptic and signal velocities.

The stochastic calculus version of the DCL law relates
random processes :

dm, = dS,[8,

B, denotes a Brownian-motion diffusion process centered
at the onigin. We can rewnite (29) in *‘noise’’ notation as

m, = S,(S, - (30)

The **noise’” process n, has zcro mean £{n, ] = 0,and
has finite vanance V([n,] = o;’/ < oo. The random-sam-
pling AVQ framework implicitly assumes that all com-
petitive learning laws are stochastic difterential or differ-
ence cquations. Such stochastic synaptic vectors my tend
to converge to pattern-class centroids, and converge ex-
ponentially quickly (8].

~m,} + dB,. (29)

m,j] ton,.

S, (y;) measures the competitive status of the jth com-
peting ncuron in Fy. Usually, §; approximates a binary
threshold function. S; may cqual a steep binary logistic
sigmoid ,

S (y) = T3e ™ » (31)
for some constant ¢ > 0. The jth ncuron wins the laterally
inhibitive competition if §; = 1, loses if §; = 0.

In (27), m, learns only if §, (y,;) changes. This contrasts
with the classical competitive leaming law

my =S (y) [Si(x) —m;] , (32)

which modulates the diffcrencc.S(x) — m; with the win-
loss signal §;, not its velocity §;. In (32), m; leamns only
if the competitive signal §; exceeds zero—only if the jth
neuron ‘‘wins’" the activation competition.

Rcal ncurons transmit and receive pulse trains. Pulse-
coded signal functions S, reveal the connection between
competitive and differential competitive leaming. A pulse-
coded signal function uses an exponentially fading win-
dow [1] of sampled binary pulses :

1
S(1) = S‘ yi(s)e 'ds | (33)
where y; (1) = 1 if a pulse occurs at 7, and y; (1) = 0 if
no pulse occurs at 1. Then {9]

5;(1) = 31 ~ S;(1). (34)
So the DCL law (27) reduces to
iy = 3 (S — my) = §(Si = my). (35)

When the second term in (35) is sufficiently small, DCL
reduces to competitive leamning. This occurs when a los-
ing neuron suddenly wins, fortheny; = land §; = 0. In
the stochastic case, the random pulse function y; repre-
sents an arbitrary random point process. and converts (35)
to a doubly stochastic model.

Similarly, the classical differential Hebbian law [6]

m, = —m, +S - S/ (36)
reduces to signal Hebbian leaming on average (in the ab-
sence of pulses) : \

my = —m, + S,SJ (37)
= —m, + §,§ + [.\‘,)'/ - NS, - _\',S,] (38)
= —m, + 85, , (39)

on average. The approximation holds exactly if and only
if no x, or v, pulses are present. a frequent event. Differ-
ential Hebbian learmning synapses “*fill in™" with Hebbian
learning when pulses are absent.

For discrete implementation, we use the DCL algo-
rithm as a stochastic difference equation.




A. Differential Competitive Learning (DCL)
1) Initialize: m, (0) = x(i). '
2) Find winning m; (1) W, () — ()l = min,
lm, (1) — x(OH.
3) Update winning m, (1):
mj(t) + (‘,ASI())(I)) [S(X(I)) - ml(l)]

if the jth ncuron wins , (vo)

il

m(1+ 1)

i

m (1 + 1) = m(r) il the ith ncuron loses . (41)

AS (y; (1)) denotes the time change of l_hc jth ncuron’s
competition signal S; ( ;) in the competition layer Fy °

A, (y(0) = sgn [S (5 + 1)) = 5 (3; ()] (42)

We define the signum operator sgn (X) as

1 ifx >0
sen () = 0 fx=0 (43)
-1 ifx <O

We update the Fy neuronal activations y; with the additive
model

w1 =y (1) + L5 (x () m, (1)

P
+ %Sk(n(t)) Wy (44)
In our simulations, the first sum in (44) reduced to
2 x; (1) my (1) (45)

when we did not transform the input patterns x with a
nonlinear signal function S;. Input or Fyx neurons in feed-
forward networks usually behave linearly: §; (x;) = Xi.
For linear inputs, we computed the second sum in (44)
for lincar-signal functions S;. Since we allowcq only one
winner per iteration, this sum reduced to a single term
yewy,. where k denotes the winning neuron. A
The p X p matrix Wdefined the Fy within-field synapuc

connection strengths :

p2 —1 =1 -1
S B

W : . (46)
e I )

Diagonal clements w, cqualed 2, off-diagonal clemems
equaled — 1. Fig. 1 shows the connection topology of the
laterally inhibitive DCL network.

Each neuron in Fy codes for a specific pattiemn class. By
(44 and the “'cosine law™",

Sy -m, - n S(x)n N, ) cos (S(x). m,)  (47)

positive learning (m,, > 0) tends to occur when the sys-
tem classifies x to the nearest pattern class D;.

If we represent the Fy signal function §; with the bipolar
logistic function ,

-2, 4
| + ™ ’ (48)

S (x,)

¢ > 0, then the DCL algonthm (40) abstracts the corre-
sponding bipolar pattem from the real-valued input. The
unsuperviscd sign change A S; in the DCL law (40) resem-
bles the reward-punish sign change in the SCLI and SCL2
algorithms. This suggests that we can meaningfully com-
pare the algorithms’ performance on the same training and
tes: data.

If we choose §; (x;) as a linear function of the input, if
S; (x;) = x;, then the discrete version of DCL resembles
the UCL, SCL1, and SCL2 algonthms. We used both lin-
ear and nonlincar formulations to compare DCL to SCL1
and SCL2. The supervised SCL1 and SCL2 algorithms
always outperformed the UCL algorithm. So we limited
our DCL compansons to SCL1 and SCL2 systems.

For most simulations, we used linearly transformed data ,
S; (x;) = x;. In these cases, we approximated the signal
difference A S; as the activation difference Ay; -

AS;(y (1) = sy (0) (49)

=sgn [yt + 1) - y@)] (50)

This approximation holds exactly over the linear part of a
signal function’s range. For then §; = d§;/dy; = c for
some constant ¢ > 0. Then..

§=5% (51)
= ¥, (52)
The constant ¢ does not affect the signum operator us¢d

in Ay,

Linear data often produce large activation sums L7 x,m,,
that saturate nonlinear signals §; to extremc values. Then
the signal difference A §; equals zero and may not discnm-
inate changes in the competitive status. The activation dif-
ference Ay, remains sensitive to these changes.

Input ficld FX Compectition ficld F v

[ RT Topolopy of the tateraly intubitive DO netaork




IV. ComprarisoN o COMPETITIVE AND DIFFERENTIAL
Comectinive LearNING FOR CENTROID ESTIMATION

We compared the DCL algorithm o the SCLI and
SCL2 algorithms for estimating centroids. All algorithms
adaptively moved the synaptic vectors m; (o pattem-class
centroids. They differed in how quickly the trained syn-
aptic vecters reached the centroids and how much the syn-
aptic vectors wandered about the centroids. The DCL al-
gorithm moved the synaptic vectors to centroids at least
as fast as did the SCL1 and SCL2 algorithms. Once the
synaptic vectors reached the pattern-class centroids, the
DCL-trained synaptic vectors wandered less about the
centroids than the STL-wrained synaptic vectors.

The DCL algorithm converged to centroids faster than
the SCL1 and SCL2 algorithms. Convergence rates were
the same for linear signal functions, S; (x;) = x;. The pat-
tern space consisted of 2000 two-dimensional Gaussian-
distributed patten vectors with variance 121 and with
centroids or modes at (20, 20), (20, —20), ( —20, 20),
and ( —20, —20). Fig. 2 shows centroid convergence of
DCL synaptic vectors with inputs transformed with bi-
polar signal functions. Fig. 3 shows the slower conver-
gence of the SCL1 algorithm with the same transformed
Gaussian Data. * denotes DCL synaptic vectors. + de-
notes SCL1 synaptic vectors. Figs. 4 and 5 show centroid
convergence for the same Gaussian data when the systems
used linear signal functions.

DCL-trained synaptic vectors wandered with less mean-
squared error about centroids than did SCL-trained syn-
aptic vectors. Fig. 6 shows mean-squared wandering about
the Gaussian pattern-class centroid (—20, 20). Fig. 6
represents several such experiments with different Gauss-
ian and non-Gaussian pattem distributions. Solid lines de-
note the convergence of the DCL synaptic vector. Dashed
lines denote convergence of the SCL1 synaptic vector.

-.. \-
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2. C ~ i i
Fiy 2. Convergence of DCL-trained synaptic vectors to bipotar centronds
of four Gaussian clusters. Bipolar lopistic signasl functions S («,) non-
lincarly trunsduce the real-valued tnput vector x into a bipolar vector in
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Fig. 3. Centroid convergence of SCL1 synaptic vectors trained with the
same patterns as in Fig. 2. Bipolar logistic signal functions nonlinearly
transduce real input pattems to bipolar »attemns.

Fig. 4. Convefgcncc of DCL-trained synaptic vectors to Gaussian pattern-
class centroids. Same pattem distribution as in Figs. 2 and 3. Input data
not transformed: §, (x,) = x,.
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Fig. 6. Trajectories of the synaptic vectors after reaching the Gaussian
pattern-class centroid at ( —20, 20). Solid lines represent DCL-trained
synaptic vectors. Dashed lines represent SCL1-trained synaptic vectors.
The two graphs plot separately the m, and m, components of the synaptic
vectorm = (m,, my,).

We calculated the mean-squared error (MSE) of centroid
wandering for the class centered at (—20, 20) after 200
iterations. Other centroids produced comparable MSE of
centroid wandering. In the first case, we used 540 Gauss-
ian samples with variance 25. Then, for the DCL algo-
rithm, the MSE of centroid wandering equaled 0.48. For
the SCL1 algorithm, it equaled 1.48. In the second case,
we used 554 Gaussian samples with variance 121. Then,
for the DCL algorithm, the MSE of centroid wandering
cqualed 4. For the SCL1 algorithm, it equaled 7.11.
Next we compared the DCL system to the SCLI1 and
SCL2 systems for pattern classification accuracy. We
trained each AVQ system with 500 Gaussian-distributed
samples for each pattern class, and for each variance level
centered about the same centroids ( —20, 0) and (20, 0).
We set variance levels at 20 units. For each variance level,
we tested each AVQ system with 1000 new Gaussian-dis-
tributed samples for each pattern class. Fig. 7(a) shows
the misclassification rates of the DCL, SCL1, and SCL2
systems for two representative Gaussian classes with equal
vanances. Fig. 7(b) shows misclassification performance
for each AVQ system when we repeated the simulation in
Fig. 7(a) for unequal variances. The pattem class witi
centroid (20, 0) had twice the variance of the pattern class
with centroid ( —20. 0). The three clustering algorithms
behaved similarly for increasing variance values.

V. Pioxest RECOGNITION SIMULATIONS

We obtained speech training samples from samples qf
continuous male speech with different English pronunci-
ations. We used a time-dependent Fourier spectrum to €x-
tract features from the speech waveforms. An ami-al!as
low-pass tilter prefiltered the speech signals. We then dig-
itized the sienals 1o 8Ftswith a 10 KHz sampling fre-
quency. A H‘;unmmg window divided the digi(izgd speech
signal into 256 sample segments. The fast Fourier trans-
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Fig. 7. AVQ misclassification rates for two Gaussian clusters: (a) with
cqual vanance centered about the centroids ( —20. 0) and (20, 0); and
(b) with uncqual vanance. In (b), the paticm class centered about (20,
0) has twice the vanance of the patiern class centered about ( —20, 0).

form algorithm gave 256 complex Fourier coefficients for

each of the 256 windowed sample segments. We divided
the 200 Hz-5 kHz frequency range into 16 regions. We
divided the 200 Hz-3 kHz frequency range into 12 equal
regions and the 3-5 kHz frequency range into four equal
regions. Six Fourier coefficients represented each region
in the 200 Hz-3 kHz range. 13 Fourier coefficients rep-
resented each region in the 3-5 kHz range. We calculated

average power spectra over each region to form a 16-di-

mensional pattern vector. We produced 16-dimensional

phoneme pattemn vectors by repeatedly sliding the Ham-
ming window by 100 samples.

The sample space consisted of real and artificial pho-
nemes. The artificial phonemes were Gaussian random
vectors with vanation 9 centercd at the real phoneme vec-
tors. We generated these noisy phoneme samples to pro-
vide the AVQ syst~ms with a statistically representative
set of training samples.

The stmulation compared the DCL, SCL1, and SCL2
leaming systems for classification of nine representative
English phonemes: five vowels /a. ¢, i, 0, u/, two fn-
catives / f, s/, one nasal /n/, and onc plosive sound /¢/.
Table I lists the misclassification rates. The AVQ systems
tended to more accurately classify vowel and nasal sounds
than they classified fricative and plosive sounds.

We trained each competitive AVQ system with 1000
Gaussian-distributed random phoneme vectors clustered
into nine pattern classes. Each pattern class was centered
about the original spoken phoneme and radially distnb-
uted with variance ¢° = 9. We randomly selected training
data according to a uniform probability distnbution to
simulate nine equiprobable pattem classes. We tested each
AVQ system with 100 new Gaussian-distributed phoneme
samples for cach phoneme type. Except for the two pho-
nemes /o/ and /1/ the DCL system misclassified no more
frequently than the SCL systems.




nCL scL1 SCL2

la/ o 0 0
le/ 3 9 4
i/ e 0 4
[o/ 5 3 16
[u/ 0 1 2
11/ 28 43 53
[s/ 1 2 6
In/ 3 4

Jt/ 52 48 26

TABLE I

PERCENTAGE MISCLASSIFICATION RATES OF THE DCL, SCL1, anD SCL2
SYSTEMS FOR THE NINE ENGLISH PHONEMES 1a, e, i, 0. u, f. s, n, 1/

CONCLUSIONS

The DCL system performed well in centroid estimation
and phoneme recognition. DCL synaptic vectors con-
verged faster to centroids than did SCL1 cynaptic vectors
when logistic bipolar signal functions transformed the in-
put sample. DCL synaptic vectors wandered less about
pattern-class centroids than SCL synaptic vectors.

Our phoneme-recognition simulations were prelimi-
nary, but agreed with our centroid-estimation stmula-
tions. The phoneme-recognition simulations suggest that
unsupervised DCL systems will perform as well as super-
vised SCL1 and SCL2 systems in many pattern environ-
ments, even though DCL systems use less pattern-class
information.

In general, we do not know in advance whether x € D;
for every training sample x, and for every pattern class
D;, for an arbitrary classification, filtering, or estimation

- +he
problem. We may not even know approxlmaté,‘\’numbcr
or characteristics of the underlying decision classes. We
can still apply DCL techniques in these cases and expect
SCL-level performance. But we may never know how
SCL systems would perform on the same data.
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CHAPTER 17

FUZZY ASSOCIATIVE MEMORIES

Fuzzy Systems as Between-Cube Mappings

In Chapter 16, we introduced continuous or fuzzy sets as points in the unit hypercube
I™ =[0,1]*. Within the cube we were interested in the distance between points. This led
to measures of the size and fuzziness of a fuzzy set and,..‘more fundamentally, to a measure
of how much one fuzzy set is a subset of another fuzzy set. This within-cube theory directly
extends to the continuous case where the space X is a subset of R" or, in ge_néral, where

X is a subset of products of real or complex spaces.

The next step is to consider mappings between fuzzy cubes. This level of abstraction
provides a surprising and f{ruitful alternative to the propositional and predicate-calculus
reasoning techniques used in artificial-intelligence (Al) expert systems. It allows us to

rcason with sets instead of propositions.

The fuzzy set framework is numerical and multidimensional. The Al framework 1s
symbolic and one-dimensional, with usually only bivalent expert “rules” or propositions
allowed. Both frameworks can encode structured knowledge in linguistic form. But the
fuzzy approach translates the structured knowledge into a flexible numerical framework
and processes it in a manner that resembles neural network processing. The numerical
framework also allows fuzzy systems to be adaptively inferred and modified, perhaps with

neural or statistical techniques, directly from problem domain sample data.

Kosko, B., NEURAL NETWORKS AND [FFUZZY SYSTEMS, Prentice-Hall, 1990




Between-cube theory is fuzzy systems theory. A fuzzy set is a point in a cube. A
fuzzy system is a mapping between cubes. A fuzzy systern S maps fuzzy sets to fuzzy
sets. Thus a fuzzy system S is a transformation S : I — [?. The n-dimensional
unit hypercube I™ houses all the fuzzy subsets of the domain space, or input universe of
discourse, X = {z1,...,z,}. [” houses all the fuzzy subscts of the range space, or output
universe of discourse, Y = {y1,...,¥p}. X and Y can also be subsets of " and . Then
the fuzzy power sets F'(2X) and F(2Y) replace I™ and I*.

In general a fuzzy system S maps families of fuzzy sets to families of fuzzy sets, thus
S: I x...xI" — "™ x...x I*. Here too we can extend the definition of a
fuzzy system to allow arbitrary products of arbitrary mathematical spaces to serve as the
domain or range spaces of the fuzzy scts.

(A technical comment is in order for sake of historical clarification. A tenet, perhaps
the defining tenet, of the classical theory [Dubois, 1980] of fuzzy sets as functions concerns
the fuzzy extension of any mathematical function. This tenet holds that any function
f: X — Y that maps points in X to points in ¥ can be extended to map the fuzzy
subsets of X to the fuzzy subsets of Y. The so-called extension principle is used to define
the set-function f: F(2%) — F(2Y), where F(2%) is the fuzzy power set of X, the set
of all fuzzy subsets of X. The formal definition of the extension principle is complicated.
The key idea is a supremum of pairwise minima. Unfortunately, the extension principle
achieves generality at the price of triviality. One can sh. w [Kosko, 1986a-87] that in general
the extension principle extends functions to fuzzy scts by stripping the fuzzy sets of their
fuzziness, mapping the fuzzy sets into bit vectors of nearly all 1s. This shortcoming,
combined with the tendency of the extension-principle framework to push fuzzy theory
into largely inaccessible regions of abstract mathematics, led in part to the development
of the alternative sets-as-points geometric framework of fuzzy theory.)

We shall focus on fuzzy systems S : I™ — [? that map balls of fuzzy scts in I" to
balls of fuzzy sets in I?. These continuous fuzzy systems behave as associative memories.
They map close inputs to close outputs. We shall refer to them as fuzzy associative
memories, or FAMs.

The simplest FAM encodes the FAM rule or association (A, B;), which associates




the p-dimensional fuzzy set I3; with the n-dimensional fuzzy set A;. These minimal FAMs
essentially map one ball in 1™ to one ball in /P, They are comparable to simple ncural
networks. But the minimal FAMs need not be adaptively trained. As discussed below,
structured knowledge of the form “If traffic is heavy in this direction, then keep the stop
light green longer” can be directly encoded in a Hebbian-style FAM matrix. In practice
we can eliminate even this matrix. In its place the user encodes the fuzzy-set association
(HEAVY, LONGER) as a single linguistic entry in a FAM bank matrix.

In general a FAM system F': I* — [? encodes and processes in parallel a FAM
bank of m FAM rules (A4, B1),...,(An, Bn). Each input A to the FAM system activates
each stored FAM rule to different degree. The minimal FAM that stores (A;, B;) maps
input A to B!, a partially activated version of B;. The more A resembles A;, the more B!
resembles B;. The corresponding output fuzzy set B combines these partially activated
fuzzy sets By, ..., B;,. In the simplest case B is a weighted average of the partially activated

sets:
B = wbB + ... + w, B, ,

where w; reflects the credibility, frequency, or strength of the fuzzy association (A;, B;). In
practice we usually “defuzzify” the output waveform B to a single numerical value y; in Y
by computing the fuzzy centroid of B with respect to the output universe of discourse Y.

More general still, a FAM system encodes a bank of compound FAM rules that associate
multiple output or consequent fuzzy scts B!, ..., Bf with multiple input or antecedent fuzzy
sets A},..., Al. We can treat compound FAM rules as compound linguistic conditionals.
Structured knowledge can then be naturally, and in many cases easily, obtained. We
combine antecedent and consequent sets with logical conjunction, disjunction, or negation.
For instance, we would interpret the compound association (A!, A% B) linguistically as
the compound conditional “IFF X! is A AND X?%is A2 | THEN Y is B” if the comma in
the fuzzy association (A', A%, B) stood for conjunction instead of, say, disjunction.

We specify in advance the numerical universes of discourse X', X?, and Y. For cach
universe of discourse X, we specify an appropriate library of fuzzy sct values, A7, ..., A}

Contiguous fuzzy sets in a library overlap. In principle a neural network can estimate these




libraries of fuzzy sets. In practicc this is usually unnecessary. The library sets represent
a weighted, though overlapping, quantization of the input space X. A different library of
fuzzy sets similarly quantizes the output space Y. Once the library of fuzzy sets is defined,
we construct the FAM by choosing appropriate combinations of input and output fuzzy
sels. We can use adaptive techniques to make, assist, or modify these choices.

An adaptive FAM (AFAM) is a time-varying FAM system. System parameters grad-
ually change as the FAM system samples and processes data. Below we discuss how neural
netwoik algorithms can adaptively infer FAM rules from training data. In principle learn-
ing can modify other FAM system components, such as the libraries of fuzzy sets or the
[FAM-rule weights w;.

Below we propose and illustrate an unsupervised adaptive clustering scheme, based on
competitive learning, for “blindly” generating and refining the bank of FAM rules. In some
cases we can use supervised learning techniques, though we need additional information

to accurately generate error estimates.

FUZZY AND NEURAL FUNCTION ESTIMATORS

Neural and fuzzy systems estimate sampled functions and behave as associative mem-
ories. They share a key advantage over traditional statistical-estimation and adaptive-
control approaches to function estimation. They are model-free estimators. Neural and
fuzzy systems estimate a function without requiring a mathematical description of how the
output functionally depends on the input. They “learn from example.” More precisely,
they learn from samples.

Both approaches are numerical, can be partially described with theorems, and admit an
algorithmic characterization that favors silicon and optical implementation. Thesc prop-
erties distinguish neural and fuzzy approaches from the symbolic processing approaches of
artificial intelligence.

Neural and fuzzy systems differ in how they estimate sampled functions. They differ

in the kind of samples used, how they represent and store those samples, and how they




associatively “inference” or map inputs to outputs.

These differences appear during system construction. The ncural approach requires
the specification of a nonlincar dynamical system, usually feedforward, the acquisition of
a sufficiently representative set of numerical training samples, and the encoding of those
training samples in the dynamical system by repeated learning cycles. The fuzzy system
requires only that a linguistic “rule matrix” be partially filled in. This task 1s markedly
simpler than designing and training a neural network. Once we construct the systems, we
can present the same numerical inputs to either system. The outputs will be in the same
numerical space of alternatives. So both systems correspond to a surface or manifold in
the input-output product space X x Y. We present examples of these surfaces in Chapters
18 and 19.

Which system, neural or fuzzy, is more appropriate for a particular problem depends on
the nature of the problem and the availability of numerical and structured data. To date
fuzzy techniques have been most successfully applied to control problems. These problems
often permit comparison with standard control-theoretic and expert-system approaches.
Neural networks so far seem best applied to ill-defined two-class pattern recognition prob-
lems (defective or nondefective, bomb or not, etc.). The application of both approaches to
new problem areas is just beginning, amid varying amounts of enthusiasm and scepticism.

Fuzzy systems estimate functions with fuzzy set samples (A;, B;). Neural systems use
numerical point samples (z;, y:). Both kinds of samples are from the input-output product
space X x Y. Figure 17.1 illustrates the geometry of fuzzy-set and numerical-point samples
taken from the function f: X — Y.

The fuzzy-set association (A;, B;) is sometimes called a “rule.” This i1s misleading
since rcasoning with sets is not the same as reasoning with propositions. Reasoning with
sets is harder. Sets are multidimensional, and associations arc housed in matrices, not
conditionals. We must take care how we define cach term and operation. We shall refer to

the antecedent term A; in the fuzzy association (A;, B;) as the input associant and the

!




conscquent term B; as the output associant.

FIGURE 17.1 Function f maps domain X to range Y. In the first illustra-
tion we use several numerical point samples (2, ;) to estimate f: X — Y.
In the second case we use only a few fuzzy subsets A; of X and B; of Y. The
fuzzy association (A;, B;) represents system structure, as an adaptive cluster-

ing algorithm might infer or as an expert might articulate. In practice there are
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usually fewer different output associants or “rule” consequents 13; than input

associants or antccedents A;.

The fuzzy-set sample (A;, B;) encodes structure. It represents a mapping itself, a min-
imal fuzzy association of part of the output space with part of the input space. In practice
this resembles a meta-rule—IF A;, THEN B;—the type of structured linguistic rule an ex-
pert might articulate to build an expert-system “knowledge base”. The association might
also be the result of an adaptive clustering algorithm.

Consider a fuzzy association that might be used in the intelligent control of a traflic
light: “If the traffic is heavy in this direction, then keep the light green longer.” The
fuzzy association is (HEAVY, LONGER). Another fuzzy association might be (LIGHT,
SHORTER). The fuzzy system encodes each linguistic association or “rule” in a numerical
fuzzy associative memory (FAM) mapping. The FAM then numerically processes numerical
input data. A measured description of traffic density (e.g., 150 cars per unit road surface
area) then corresponds to a unique numerical output (e.g., 3 seconds), the “recalled”
output.

The degree to which a particular measurement of traffic density is heavy dcpends on
how we define the fuzzy set of heavy traffic. The definition may be obtained from statistical
or neural clustering of historical data or from pooling the responses of experts. In practice
the fuzzy engineer and the problem domain expert agree on one of many possible libraries
of fuzzy set definitions for the variables in question.

The degree to which the traffic light is kept green longer depends on the degree to
which the measurement is heavy. In the simplest case the two degrees are the same. In
general they differ. In actual fuzzy systems the output control variables—in this case the
single variable green light duration—depend on many FAM rule antecedents or associants

that are activated to different degrees by incoming data.
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Neural vs. Fuzzy Representation of Structured Knowledge

The functional distinction between how fuzzy and ncural systems differ begins with
how they represent structured knowledge. How would a neural network encode the same
associative information? How would a neural network encode the structured knowledge
“If the traffic is heavy in this direction, then keep the light green longer”?

The simplest method is to encode two associated numerical vectors. One vector rep-
resents the input associant HEAVY. The other vector represents the output associant
LONGER. But this is too simple. For the neural network’s fault tolerance now works
to its disadvantage. The network tends to reconstruct partial inputs to complete sample
inputs. It erases the desired partial degrees of activation. If an input is closé to A;, the
output will tend to be B;. If the output is distant from A;, the output will tend to be some
other sampled output vector or a spurious output altogether.

A better neural approach is to encode a mapping from the heavy-traffic subspace to
the longer-time subspace. Then the neural network needs a representative sample set to
capture this structure. Statistical networks, such as adaptive vector quantizers, may need
thousands of statistically representative samples. Feedforward multi-layer neural networks
trained with the backpropagation algorithm may need hundreds of representative numerical
input-output pairs and may need to recycle these samples tens of thousands of times in
the learning process.

The neural approach suffers a deeper problem than just the computational burden of
training. What does it encode? How do we know the network encodes the original struc-
ture? What does it recall? There is no natural inferential audit trail. System nonlinearities
wash 1t away. Unlike an expert system, we do not know which inferential paths the network
uses to reach a given output or even which inferential paths exist. There is only a system of
synchronous or asynchronous nonlinear functions. Unlike, say, the adaptive Kalman filter,
we cannot appeal to a postulated mathematical model of how the output state depends on
the input state. Model-free estimation is, after all, the central computational advantage

of ncural networks. The cost is system inscrutability.
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We are left with an unstructured computational black box. We do not know what the
neural network encoded during training or what it will encode or forget in further training.
(For competitive adaptive vector quantizers we do know that sample-space centroids are
asymptotically estimatec.) We can characterize the necural network’s behavior only by
exhaustively passing all inputs through the black box and recording the recalled outputs.
The characterization may be in terms of a summary scalar like mean-squared error.

This black-box characterization of the network’s behavior involves a computational
dilemma. On the one hand, for most problems the number of input-output cases we need
to check is computationally prohibitive. On the other, when the number of input-output
cases is tractable, we may as well store these pairs and appeal to them directly, and without
error, as a look-up table. In ihe first case the neural network is unreliable. In the second
case 1L 1S unnecessary.

A further problem is sample generation. Where did the original numerical point samples
come from? Was an expert asked to give numbers? How reliable are such numerical vectors,
especially wheu tlic e<pert feels most comfortable giving the original linguistic data? This
procedure seems at most as reliable as the expert-system method of asking an expert to
give condition-action ruies with numerical uncertainty weights.

Statistical neural estimators require a “statistically representative” sample set. We may
need to randomly “create” these samples from an initial small sample set by bootstrap tech-
niques or by random-number generation of points clustered near the original samples. Both
sample-augmentation procedures assume that the initial sample set sufficiently represents
the underlying probability distribution. The problem of where the original sample set
comes from remains. The fuzziness of the notion “statistically representative” compounds
the problem. In general we do not know in advance how well a given sample set reflects an
unknown underlying distribution of points. Indeed when the network is adapting on-line,
we know only past samples. The remainder of the sample set 1s in the unsampled future.

In contrast, fuzzy systems directly encode the linguistic sample (HEAVY, LONGER) in
a dedicated numerical matrix. The default encoding technique is the fuzzy Hebb procedure
discussed below. For practical problems, as mentioned above, the numerical matrix need

not be stored. Indeed it need not even be formed. Certain numerical inputs permit this
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simplification, as we shall see below. In general we describe inputs by an uncertainty
distribution, probabilistic or fuzzy. Then we must use the entire matrix.

For instance, if a heavy traffic input is simply the number 150, we can omit the FAM
matrix. But if the input is a Gaussian curve with mean 150, then in principle we must
process the vector input with a FAM matrix. (In practice we might use only the mean.)
This difference is explained below. The dimensions of the linguistic FAM bank matrix
are usually small. The dimensions reflect the quantization levels of the input and output
spaces.

The fuzzy approach combines the purely numerical approaches of ncural networks and
mathematical modeling with the symbolic, struc' v re-rich approaches of artificial intelli-
gence. We acquire knowledge symbolically—or numerically if we use adaptive techniques
—but represent it numerically. We also process data numerically. Adaptive FAM rules
correspond to common-sense, often non-articulated, behavioral rules that improve with
experience.

We can acquire structured expertise in the fuzzy terminology of the knowledge source,
the “expert.” This requires little or no force-fitting. Such is the expressive power of
fuzziness. Yet in the numerical domain we can prove theorems and design hardware.

This approach does not abandon neural network techniques. Instead, it limits them to
unstructured parameter and state estimation, pattern recognition, and cluster formation.
The system architecture remains fuzzy, though perhaps adaptively so. In the same spirit,

no one belicves that the brain is a single unstructured ncural network.

FAMS as Mappings

Fuzzy associative memories (FAMs) are transformations. FAMs map fuzzy scts
lo fuzzy sefs. They map unit cubes to unit cubes. This is evident in Figure 17.1. In
the simplest case the FAM consists of a single association, such as (HHEAVY, LONGER).
In general the FAM consists of a bank of different FAM associations. Fach association

is represented by a different, numerical FAM matrix, or a different entry in a FAM-bank
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matrix. These matrices are not combined as with necural ne‘work associative memory
(outer-product) matrices. (An exception is the fuzzy cognitive map [Kosko, 1988; Taber,
1987, 1990].) The matrices are stored separately but accessed in parallel.

We begin with single-association FAMs. For concreteness let the fuzzy-set pair (A, B)

encode the traflic-control association (HEAVY, LIGHT). We quantize the domain of traffic

density to the n numerical variables z,, 2, ..., z,. We quantize the range of green-light
duration to the p variables y;, y2, ..., yp. The elements z; and y; belong respectively to
the ground sets X = {zy, ..., z,} and Y = {y;, ..., y,}. 71 might represent zero

traffic density. y, might represent 10 seconds.

The fuzzy sets A and B are fuzzy subsets of X and Y. So A is point in the n-
dimensional unit hypercube I* = [0, 1]*, and B is a point in the p-dimensional fuzzy
cube IP. Equivalently, we can think of A and B as membership functions m4 and mg
mapping the elements z; of X and y; of Y to degrees of membership in [0, 1]. The
membership values, or fit (fuzzy unit) values, indicate how much z; belongs to or fits in
subset A, and how much y; belongs to B. We describe this with the abstract functions
my: X — [0, 1]]and mg: Y — [0, 1]. We shall freely view sets both as functions
and as points.

The geometric sets-as-points interpretation of fuzzy sets A and B as points in unit
cubes allows a natural vector representation. We represent A and B by the numerical fit
vectors A = (ai, ..., @an)and B = (by, ..., b)), where a; = my4(z;) and b; = mp(y;).
We can interpret the identifications A = HEAVY and B = LONGER to suit the problem
at hand. Intuitively the a; values should increase as the index 7 increases, perhaps ap-
proximating a sigmoid membership function. Figurc 17.2 illustrates three possible fuzzy

subsets of the universe of discourse X.




1. Medium

f T
X1=0 50 100 150 Xp = 200

TRAFFIC DENSITY

FIGURE 17.2  Three possible fuzzy subsets of traffic density space X. Each
fuzzy sample corresponds to such a subset. We draw the fuzzy sets as contin-
uous membership functions. In practice membership values are quantized. So
the sets are points in the unit hypercube I". Each fuzzy sample corresponds

to such a subset.

Fuzzy Vector-Matrix Multiplication: Max-Min Composition

Fuzzy vector-matrix multiplication is similar to classical vector-matrix multiplication.
We replace pairwise multiplications with pairwise minima. We replace column (row) sums
with column (row) maxiina. We denote this fuzzy vector-matrix composition relation,
or the max-min composition relation [Klir, 1988], by the composition operator “o”. For

row fit vectors A and B and fuzzy n-by-p matrix M (a point in ["*P):

AoM = B |, (1)




where we compute the “recalled” component b; by taking the fuzzy inner product of fit

vector A with the jth column of M:

b, = max min(a;, my;) . (2)
Suppose we compose the fit vector A = (.3 .4 .8 1) with the fuzzy matrix M given by
2 8 7
7 6 .6
M =
8 .1 .5
0 2 3

Then we compute the “recalled” fit vector B = A o M component-wise as

by = max{min(.3, .2), min(.4, .7), min(.8, .8), min(1, 0)}

= max(.2, 4, .8, 0)

b; = max(.3, .4, .5, .3)

So B = (.8 .4.5). If we somechow encoded (A, B) in the FAM matrix M, we would say
that the FAM system exhibits perfect recall in the forward direction.
The necural interpretation of max-min composition is that each neuron in field Fy

(or field Fg) generates its signal/activation value by fuzzy lincar composition. Passing
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inforination back through M7 allows us to interpret the fuzzy system as a bidirectional as-
cociative memory (BAM). The Bidirectional FAM Theorems below characterize successful

BAM recall for fuzzy correlation or Hebbian learning.

For completeness we also mention the max-product composition operator, which
replaces minimum with product in (2):

b; = max a; m;;
J 1<i<n Y

In the fuzzy literature this composition operator is often confused with the fuzzy correlation
encoding scheme discussed below. Max-product composition is a method for “multiply-
ing” fuzzy matrices or vectors. Fuzzy correlation, which also uses pairwise products of
fit values, is a method for constructing fuzzy matrices. In practice, and in the following

discussion, we use only max-min composition.

FUZZY HEBB FAMs

Most fuzzy systems found in applications are fuzzy Hebb FAMs [Kosko, 1986b). They
are fuzzy systems S : I®™ — IP constructed in a simple neural-like manner. As discussed
in Chapter 4, in neural network theory we interpret the classical Hebbian hypothesis of
correlation synaptic learning [Hebb, 1949] as unsupervised learning with the signal product

S,‘ SJ’I

my; = -y + S Si(y;) - (3)

For a given pair of bipolar vectors (X, Y'), the neural interpretation gives the outer-product

correlation matrix

M = XTy . (4)

The fuzzy Hebb matrix is similarly defined pointwise by the minimum of the “sig-

nals” a; and bj, an encoding scheme we shall call correlation-minimum encoding;:
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my; = min(a,—,bj) , (5)

given in matrix notation as the fuzzy outer-product

M = ATop . (6)

Mamdani [1977] and Togai [1986] independently arrived at the fuzzy Hebbian prescrip-
tion (5) as a multi-valued logical-implication operator: truth(a; — &;) = min(a, b;).
The min operator, though, is a symmetric truth operator. So it does not properly gen-
eralize the classical implication P — @, which is false if and only if the antecedent P
is true and the consequent Q is false, {(P) = 1 and ¢(Q) = 0. In contrast, a like desire
to define a “conditional possibility” matrix pointwise with continuous implication values
led Zadeh [1983] to choose the Lukasiewicz implication operator: m;; = truth(a; —
b;) = min(1,1 —a; + b;). The problem with the Lukasiewicz operator is that it usually
unity. For min(1,1 —a; + b;) < 1 iff a; > b;. Most entries of the resulting matrix M
are unity or near unity. This ignores the information in the association (A, B). So A’ o M
tends to equal the largest fit value a} for any system input A'.

We construct an autoassociative fuzzy Hebb FAM matrix by encoding the redundant

pair (A, A) in (6), as the fuzzy auto-correlation matrix:

M =AT o A . (7)

In the previous example the matrix M was such that the input A = (3 4 8 1)
recalled fit vector B = (.8 .4 .5) upon max-min composition: A o M = B. Will
B still be recalled if we replace the original matrix M with the fuzzy Hebb matrix found

with (6)7 Substituting A and B in (6) gives

M = AT o B =

3
4

o (.8 4 .5) =
.8

B s W

o o &~ W
SIS BN 3t

1
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This fuzzy Hebb matrix A“ illustratcs two key properties. First, the ith row of M is
the pairwise minimum of @; and the output associant 3. Symmetrically, the jth column

of M is the pairwise minitnum of b; and the input associant A:

a A DB
M = : (8)
a, \ B
= [by A AT| ... | b A AT} | (9)
where the cap operator denotes pairwise minimum: a; A b, = min(a;b;). The term

a; A B indicates component-wise mmimum:

a; N B = (a,‘ A by,...,a; A bn) . (10)
Hence if some a; = 1, then the kth row of M is B. If some 4 = 1, the {th column of

M is A. More generally, if some ay is at least as large as every b;, then the kth row of the

fuzzy Hebb matrix M is B.

Second, the third and fourth ogiu:{ms of M are just the fit vector B. Yet no column
is A. This allows perfect recall in the forward direction, A o M = B, but not in the
backward direction, B o MT # A:

Ao M = (845 = B |,
BoMT = (3.4 838 = A CA
A’ is a proper subsct of A: A’ # A and S(A’,A) = 1, where S measures the degree of
subsethood of A’ in A, as discussed in Chapter 16. In other words, a; < a, for cach 2 and
@), < ay for at least onc k. The Bidirectional FAM Theorems below show that this is a

general property: If B’ = A o M differs from B, then B’ is a proper subset of B. Hence

fuzzy subscts truly map to fuzzy subsets.
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The Bidirectional FAM Theorem for Correlation-Minimum En-

coding

Analysis of FAM recall uses the traditional [Klir, 1988] fuzzy sct notions of the height

and the normality of fuzzy sets. The height [1(A) of fuzzy set A is the maximum fit value

of A:
HA) = o

A fuzzy set is normal if H(A) = 1, if at least one fit value a; is maximal: a; = 1. In
practice fuzzy sets are usually normal. We can extend a nonnormal fuzzy sct to a normal
fuzzy set by adding a dummy dimenston with corresponding fit value a,4y ="1.

Recall accuracy in fuzzy Hebb FAMs constructed with correlation-minimum encoding
depends on the heights H(A) and H(B). Normal fuzzy sets exhibit perfect recall. Indeed
(A, B) is a bidirectional fixed point—A4 o M = Band B o MT = A—if and only if
H(A) = H(B), which always holds if A and B are normal. This is the content of the
Bidirectional FAM Theorem [Kosko, 1986a} for correlation-minimum encoding. Below we

present a similar theorem for correlation-product encoding.

Correlation-Minimum Bidirectional FAM Theorem. If M = AT o B, then

) AoM = B iff H(A) > H(B) ,

(i) Bo MT = A il H(B) > HA) |,
(in) Ao M C B for any A" .
(iv) B o MT C A for any B’ .

Proof.  Observe that the height H(A) is the fuzzy norm of A:
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Ao AT = max ¢; A ¢; = max a; = [I(4) .
Then
Ao M = Ao (AT o B)
= (Ao AT) o B
= H(A) o B
= H(A) A B

So H(A) A B = Biff H(A) > H(B), establishing (i). Now suppose A’ is an arbitrary

fit vector in I™. Then

A oM = (Ao AT) o B
= (A o AT) A B,

which establishes (iii). A similar argument using MY = BT o A establishes (ii) and (iv).

Q.E.D.

The equality Ao AT = H(A) implies an immediate corollary of the Bidirectional
FAM Theorem. Supersets A O A behave the same as the encoded input associant

A: AA oM = Bif A o M = B. Fuzzy Hebb FAMs ignore the information in the
difference A* — A, when A* C A"

Correlation-Product Encoding

An alternative fuzzy Hebbian encoding scheme is correlation-product encoding.

The standard mathematical outer product of the fit vectors A and B forms the FAM

matrix M. This is given pointwise as
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m;; = a; b; | (11)

and in matrix notation as

M = ATB | (12)

So the ith row of M is just the fit-scaled fuzzy set a; B, and the jth column of M is b; AT:

ay B

M = : (13)
a, B

= [b AT] ... | b AT] (14)

IfA = (3.4.81)and B = (.8 .4.5) as above, we encode the FAM rule (A, B) with

correlation-product in the following matrix M:

24 .12 .15

32 .16 .2
M =

.64 32

8 4 5

Note that if AY = (000 1), then A" o M = B. The output associant B is recalled
to maximal degree. If A’ = (100 0), then A" 0o M = (.24 .12 .15). The output B is
recalled only to degree .3.

Correlation-minimum encoding produces a matrix of clipped B sets. Correlation-
product encoding produces a matrix of scaled B sets. In membership function plots,
the scaled fuzzy sets a; B all have the same shape as B. The clipped fuzzy sets a; A B
are largely flat. In this sense correlation-product encoding preserves more information
than correlation-minimum encoding, an important point in fuzzy applications when out-
put fuzzy sets are added together as in equation (17) below. In the fuzzy-applications

literature this often leads to the selection of correlation-product encoding.
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Unfortunately, in the fuzzy-applications literature the correlation-product encoding
scheme is invariably confused with the max-product composition method of recall or infer-
ence, as mentioned above. This confusion is so widespread it warrants formal clarification.

In practice, and in the fuzzy control applications developed in Chapters 18 and 19, the
input fuzzy set A’ is a binary vector with one 1 and all other elements 0—a row of the
n-by-n identity matrix. A’ represents the occurrence of the crisp measurement datum z;,
such as a traffic density value of 30. When applied to the encoded FAM rule (A, B), the
measurement value r; activates A to degree a;. This is part of the max-min composition
recall process, for A’ o M = (A’ o AT) o B = a; A B or a; B depending on whether
correlation-minimum or correlation-product encoding is used. We activate or “fire” the
output associant B of the “rule” to degree a;.

Since the values a; are binary, a; mi; = a; A m;. So the max-min and max-
product composition operators coincide. We avoid this confusion by referring to both
the recall process and the correlation encoding scheme as correlation-minimum infer-
ence when correlation-minimum encoding is combined with max-min composition, and
as correlation-product inference when correlation-product encoding is combined with
max-min composition.

We now prove the correlation-product version of the Bidirectional FAM Theorem.

Correlation-Product Bidirectional FAM Theorem. If M = AT Band A and B

are non-null fit vectors, then

i) AoM = B iff H(A) =1 |,

(i) BoMT = A f HB) =1 |,
(i) Ao M C B for any A’ .
(iviy B o MT C A for any B’ .




Proof.

Ao M A o (AT B)

= (Ao AT)YB
= H(A) B .

Since B is not the empty set, H{(A) B = B iff H(A) = l,establishing(i). (Ao M = B
holds trivially if B is the empty set.) For an arbitrary fit vector A’ in I™:

A oM = (Ao A)B
Cc H(A)B

c B ,

since A o A < H(A), establishing (iii). (ii) and (iv) are proved similarly using
MT = BT A. QED.

Superimposing FAM Rules

Now suppose we have m FAM rules or associations (Ay, B1),...,(Am, Bm). The fuzzy
Hebb encoding scheme (6) leads to m FAM matrices My,..., My to encode the associa-
tions. The natural neural-network temptation is to add, or in this casc maximum, the m

matrices pointwise to distributively encode the associations in a single matrix M:

M = max M, . (15)

1<k<m
This superimposition scheme fails for fuzzy Hebbian encoding. The superimposed result
tends to be the matrix ATo B, where A and B arc the pointwisc maximum of the respective

m fit vectors Ay and Bj. We can see this from the pointwise inequality




max min(a¥,t*) < min( max af, max %) . 16)
1<k<m J 1<k<m 1<k<m

Inequality (16) tends to hold with equality as m increases since all maximum terms ap-
proach unity. We lose the information in the m associations (A, By).
The fuzzy approach to the superimposition problem is to additively superimpose the m

recalled vectors Bj instead of the fuzzy Hebb matrices M. B and M, are given by

Ao M, = AO(AZOB&-)

I

14
B, ,

for any fit-vector input A applied in parallel to the bank of FAM rules (A, Bx). This
requires separately storing the m associations (Ag, Bi), as if each association in the FAM
bank were a separate feedforward neural network.

Separate storage of FAM associations is costly but provides an “audit trail” of the
FAM inference procedure. The user can directly determine which FAM rules contributed
how much membership activation to a “concluded” output. Separate storage also pro-
vides knowledge-base modularity. The user can add or delete FAM-structured knowledge
without disturbing stored knowledge. Both of these benefits are advantages over a pure
neural-network architecture for encoding the same associations ( Ax, By). Of course we can
use neural networks exogenously to estimate, or even individually house, the associations
(Ax, Br).

Separate storage of FAM rules brings out another distinction between FAM systems
and neural networks. A fit-vector input A activates all the FAM rules (Ax, ;) n parallel
but to different degrees. If A only partially “satisfies” the antecedent associant Ay, the
consequent associant By is only partially activated. If A does not satisfy Ay at all, By docs
not activate at all. 3 is the null vector.

Neural networks behave differently. They try to reconstruct the entire association

(A, Bi) when stimulated with A. If A and Ar mismatch severely, a neural network will

t~
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tend to emit a non-null output By, perhaps the result of the network dynamical system
falling into a “spurious” attractor in the state space. This may be desirable for metrical
classification problems. It is undesirable for inferential problems and, arguably, for associa-
tive memory problems. When we ask an expert a question outside his ficld of knowledge,
in many cases it is more prudent for him to give no response than to give an educated,

though wild, guess.

Recalled Outputs and “Defuzzification”

The recalled fit-vector output B is a weighted sum of the individual recalled vectors

By

B =Y w8, |, (17)
k=1

where the nonnegative weight wi summarizes the credibility or strength of the kth FAM
rule (A, By). The credibility weights wy are immediate candidates for adaptive modifica-
tion. In practice we choose w; = ... = w,, = 1 as a default.

In principle, though not in practice, the recalled fit-vector output is a normalized sum
of the Bi_ fit vectors. This keeps the components of B unit-interval valued. We do not
use normalization in practice because we in- ariably “defuzzify” the output distribution B
to produce a single numerical output, a single value in the output universe of discourse
Y = {yi,...,¥}. The information in the output waveform B resides largely in the
relative values of the membership degrees.

The simplest defuzzification scheme is to choose that clement y,, that has maximal

membership in the output fuzzy set B3:

TnH(ymax ) = ln<]]a<xk 77lB(yj ) . ( 1 8)

‘The popular probabilistic inethods of maximum-likelihood and maximum-a-posteriori pa-

rameter estimation motivate this maximum-membership defuzzification scheme. The




maximum-membership scheme (18) is also computationally light.

There are two fundamental problems with the maximum-membership defuzzification
scheme. IMirst, the mode of the J7 distribution is not unique. This is especially troublesome
with correlation-minimum encoding, as the representation (8) shows, and somewhat less
troublesome with correlation-product encoding. Since the minimum operator clips off the
top of the By fit vectors, the additively combined output fit vector B tends to be flat over
many regions of universe of discourse Y. For continuous membership functions this leads
to infinitely many modes. Even for quantized fuzzy sets, there may be many modes.

In practice we can average multiple modes. For large FAM banks of “independent”
FAM rules, some form of the Central Limit Theorem (whose proof ultimately depends
on Fourier transformability not probability) tends to apply. The waveform B tends to
resemble a Gaussian membership function. So a unique mode tends to emerge. It tends
to emerge with fewer samples if we use correlation-product encoding.

Second, the maximum-membership scheme ignores the information in niuch of the
waveform B. Again correlation-minimum encoding compounds the problem. In practice
B is often highly asymmetric, even if it is unimodal. Infinitely many output distributions
can share the same mode.

The natural alternative is the fuzzy centroid defuzzification scheme. We directly
compute the real-valued output as a normalized convex combination of fit values, the fuzzy

centroid B of fit-vector B with respect to output space Y:

P

>~ yi ms(y;)
B = = (19)

P
Z meg J]

The fuzzy centroid is unique and uses all the information in the output distribution B. For
symmetric unimodal distributions the mode and fuzzy centroid coincide. In many cases
we must replace the diserete sums in (19) with integrals over continuously infinite spaces.
We show in Chapter 19, though, that for libraries of trapezoidal fuzzy scts we can replace
such a ratio of integrals with a ratio of simple discrete sums.

Note that computing the centroid (19) is the only step in the F'AM inference procedure
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that requires division. All other operations arc inner products, pairwise minima, and ad-
ditions. This promises rcalization in a fuzzy optical processor. Alrcady some form of this
FAM-inference scheme has led to digital [Togai, 1986] and analog [Yamakawa, 1987-83]

VLSI circuitry.

FAM System Architecture

Figure 17.3 schematizes the architecture of the nonlincar FAM system F. Note that I

maps fuzzy sets to fuzzy sets: F(A) = B. So F is in fact a fuzzy-system transformation
F: I™ — I?. In practice A is a bit vector with one unity value, a; = 1, and all other
fit values zero, a; = 0.

The output fuzzy set B is usually defuzzified with the centroid technique to produce an
exact element y; in the output universe of discourse Y. In effect defuzzification produces
an output binary vector O, again with one element 1 and the rest 0s. At this level the FAM
system F maps sets to sets, reducing the fuzzy system F to a mapping between Boolean
cubes, F: {0,1}* — {0,1}*. In many applications we model X and Y as continuous
universes of discourse. So n and p are quite large. We shall call such systems binary

input-output FAMs.
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FIGURE 17.3 FAM system architecture. The FAM system F maps fuzzy
sets in the unit cube I™ to fuzzy sets in the unit cube I?. Binary input fuzzy
sets are often used in practice to model exact input data. In general only an
uncertainty estimate of the system state is available. So A is a proper fuzzy set.
The user can defuzzify output fuzzy set B to yield exact output data, reducing

the FAM system to a mapping between Boolean cubes.

Binary Input-Output FAMs: Inverted Pendulum Example

Binary input-output FAMs (BIOFAMs) are the most popular fuzzy systems for appli-
cations. BIOFAMs map system state-variable data to control data. In the case of trafhc
control, a BIOFAM maps traffic densities to green (and red) light durations.

BIOFAMs easily extend to multiple FAM rule antecedents, to mappings from product

cubes to product cubes. There has been little theoretical justification for this extension,
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aside from Mamdani’s [1977] original suggestion to multiply relational matrices. The ex-
tension to multi-antecedent FAM rules is casier applied than formally explained. In the
next section we present a general explanation for dealing with multi-antecedent FAM rules.
First, though, we present the BIOFAM algorithm by illustrating it, and the FAM construc-
tion procedure, on an archetypical control problem.

Consider an inverted pendulum. In particular, consider how to adjust a motor to bal-
ance an inverted pendulum in two dimensions. The inverted pendulum is a classical control
problem. It admits a math-model control solution. This provides a formal benchmark for
BIOFAM pendulum controllers.

There are two state variables and one control variable. The first state variable is the
angle 0 that the pendulum shaft makes with the vertical. Zero angle corresponds to the
vertical position. Positive angles are to the right of the vertical, negative angles to the left.

The second state variable is the angular velocity AO. In practice we approximate the
instantaneous angular velocity Af as the difference between the present angle measurement

0, and the previous angle measurement 0,_;:
AG, = 0: - 01—1

The <ontrol variable is the motor current or angular velocity v,. The velocity can also
be positive or negative. We expect that if the pendulum falls to the right, the motor
velocity should be negative to compensate. If the pendulum falls to the left, the motor
velocity should be positive. If the pendulum successfully balances at the vertical, the motor
velocity should be zero.

The real line R is the universe of discourse of the three variables. In practice we
restrict each universe of discourse to a comparatively small interval, such as [-90,90] for
the pendulum angle, centered about zero.

We can quantize cach universe of discourse into five overlapping fuzzy sets. We know
that the system variables can be positive, zero, or negative. We can quantize the magni-
tudes of the system variables finely or coarsely. Suppose we quantize the magnitudes as

small, medium, and large. This leads to seven linguistic fuzzy set values:
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NL: Negative Large
NM: Negative Medium
NS: Negative Small
ZE:  Zero

PS:  Positive Small
PM: Positive Medium
PL: Positive Large

For example, 0 is a fuzzy variable that takes NI as a fuzzy set value. Different fuzzy
quantizations of the angle universe of discourse allow the fuzzy variable 0 to assume differ-
ent fuzzy set values. The expressive power of the FAM approach stems from these fuzzy-set
quantizations. In one stroke we reduce system dimensions, and we describe a nonlinear
numerical process with linguistic common-sense terms.

We are not concerned with the exact shape of the fuzzy sets defined on each of the
three universes of discourse. In practice the quantizing fuzzy sets are usually symmetric
triangles or trapezoids centered about representive values. {We can think of such sets as
fuzzy numbers.) The set ZE may be a Gaussian curve for the pendulum angle 6, a triangle
for the angular velocity A6, and a trapezoid for the velocity v. But all the ZE fuzzy sets
will be centered about the numerical value zero, which will have maximum membership in
the set of zero values.

How much should contiguous fuzzy sets overlap? This design issue depends on the
problem at hand. Too much overlap blurs the distinction between the fuzzy set values.
Too little overlap tends to resemble bivalent control, producing overshoot and undershoot.
In Chapter 19 we determine experimentally the following default heuristic for ideal overlap:
Contiguous fuzzy sels in a library should overlap approzimately 25%.

IFAM rules are triples, such as (NM, Z; PM). They describe how to modify the con-
trol variable for observed values of the pendulum state variables. A FAM rule associates
a motor-velocity {uzzy set value with a pendulum-angle fuzzy set value and an angular-

velocity fuzzy set value. So we can interpret the triple (NM,Z; PM) as the set-level




implication

IF the pendulum angle 0 is negative but medium
AND the angular velocity A€ is about zero ,

THEN the motor velocity should be positive but medium .

These commonsensical FAM rules are comparatively easy to articulate in natural language.

Consider a terser linguistic version of the same threec-antecedent FAM rule:

IF 0 = NM AND A0 = ZF,

THEN v = PM.

Even this mild level of formalism may inhibit the knowledge acquisition process. On the
other hand, the still terser FAM triple (NM, ZE; PM) allows knowledge to be acquired
simply by filling in a few entries in a linguistic FAM-bank matrix. In practice this often
allows a working system to be developed in hours, if not minutes.

We specify the pendulum FAM system when we choose a FAM bank of two-antecedent
FAM rules. Perhaps the first FAM rule to choose is the steady-state FAM rule: (ZE,ZE; ZE).
The steady-state FAM rule describes what to do in equilibrium. For the inverted pendulum
we should do nothing.

This is typical of many control problems that require nulling a scalar error measure.
We can control multivariable problems by nulling the norms of the system crror vector
and error-velocity vectors, or, better, by directly nulling the individual scalar variables.
(Chapter 19 shows how error nulling can control a realtime target tracking system.) Error
nulling tractably extends the FAM methodology to nonlinear estimation, control, and

decision problems of high dimension.




The pendulum FAM bank is a 7-by-7 matrix with linguistic fuzzy-set entries. We index
the columns by the seven fuzzy sets that quantize the angle 0 universe of discourse. We
index the rows by the seven fuzzy scts that quantize the angular velocity A@ universe of
discourse.

Each matrix entry is one of seven motor-velocity fuzzy-set values. Since a FAM rule is a
mapping or function, there is exactly one output velocity value for every pair of angle and
angular-velocity values. So the 49 entries in the FAM bank matrix represent the 49 possible
two-antecedent FAM rules. In practice most of the entries are blank. In the adaptive FAM
case discussed below, we adaptively generate the entries from process sample data.

Commonsense dictates the entries in the pendulum FAM bank matrix. Suppose the
pendulum is not changing. So A0 = ZE. If the pendulum is to the right of vertical,
the motor velocity should be negative to compensate. The farther the pendulum is to
the right, the larger the negative motor velocity should be. The motor velocity should
be positive if the pendulum is to the left. So the fourth row of the FAM bank matrix,
which corresponds to A6 = ZE, should be the ordinal inverse of the § row values. This
assignment includes the steady-state FAM rule (ZE, ZE; ZE).

Now suppose the angle § is zero but the pendulum is moving. If the angular velocity is
negative, the pendulum will overshoot to the left. So the motor velocity should be positive
to compensate. If the angular velocity is positive, the motor velocity should be negative.
The greater the angular velocity is in magnitude, the greater the motor velocity should
be in magnitude. So the fourth column of the FAM bank matrix, which corresponds to
0 = ZE, should be the ordinal inverse of the A@ column values. This assignment also
includes the steady-state FAM rule.

Positive 8 values with negative Af values should produce negative motor velocity values,
since the pendulum 1s heading toward the vertical. So (PS, NS; NS) is a candidate FAM
rule. Symmetrically, negative 0 values with positive Af values should produce positive
motor velocity values. So (NS, PS; PS) is another candidate FAM rule.

This gives 15 FAM rules altogether. In practice these rules are more than sufficient to
successfully balance an inverted pendulum. Different, and smaller, subsets of FAM rules

may also successfully balance the pendulum.
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We can represent the bank of 15 FAM rules as the 7-by-7 linguistic matrix

0

AO NL NM NS ZE PS P PL

NL

NM

NS

PS

PM

PL

The BIOFAM system F also admits a geometric interpretation. The set of all possible
input-outpairs (6, A8; F(8,A0)) defines a FAM surface in the input-output product space,
in this case in R3. We plot examples of these control surfaces in Chapters 18 and 19.

The BIOFAM inference procedure activates in parallel the antecedents of all 15 FAM
rules. The binary or pulse nature of inputs picks off single fit values from the quantizing
fuzzy sets. We can use either the correlation-minimum or correlation-product inferenc-
ing technique. For simplicity we shall illustrate the procedure with correlation-minimum
inferencing.

Suppose the current pendulum angle 0 is 15 degrees and the angular velocity A0 s
—10. This amounts to passing two bit vectors of one 1 and all else 0 through the BIOFAM
system. What is the corresponding motor velocity value v = F(15, —10)?

Consider first how the input data pair (15, -10) activates stcady-state “AM rule (ZE, ZE;
7 E). Suppose we define the antecedent and consequent fuzzy sets for ZFE with the trian-
gular fuzzy set membership functions in Figure 17.4. Then the angle datum 15 is a zero

angle value to degree .2 :  m%p(15) = .2. The angular velocity datum -10 is a zero
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angular velocity value to degree .5: m4%(—10) = 5.

We combine the antecedent fit values with minimum or maximum according as the
antecedent fuzzy sets are combined with the conjunctive AND or the disjunctive OR.
Intuitively, it should be at least as difficult to satisfy both antecedent conditions as to
satisfy cither one separately.

The FAM rule notation (ZE,ZE; ZFE) implicitly assumes that antecedent fuzzy sets
are combined conjunctively with AND. So the data satisfy the compound antecedent of

the FAM rule (ZE,ZE; ZFE) to degree

min(m¥z(15), m35(—10)) = min(.2, .5)

= .2

Clearly this methodology extends to any number of antecedent terms connected with ar-
bitrary logical (set-theoretical) connectives.

The system should now activate the consequent fuzzy set of zero motor velocity values
to degree .2. This is not the same as activating the Z E motor velocity fuzzy set 100% with
probability .2, and certainly not the same as Prob{v = 0} = .2. Instead a deterministic
20% of ZE should result and, according to the additive combination formula (17), should
be added to the final output fuzzy set.

The correlation-minimum inference procedure activates the angular velocity fuzzy set

ZE to degree .2 by taking the pairwise minimum of .2 and the ZE fuzzy set mY:

min(m%g(15), m35(—10)) A myp(v) = 2 A myg(v)

for all velocity values v. The correlation-product inference procedure would simply multiply
the zero angular velocity fuzzy set by .2: .2 mY.(v) for all v.

The data similarly activate the FAM rule (PS, ZE; NS) depicted in Figure 17.4. The
angle datum 15 is a small but positive angle value to degree .8. The angular velocity datum
-10 is a zero angular velocity value to degree .5. So the output motor velocity fuzzy sct of
small but negative motor velocity values is scaled by .5, the lesser of the two antccedent

fit values:




min(mbg(15), mZ5(—10)) A mig(v) = .5 A mig(v)

for all velocity values v. So the data activate the FAM rule (PS, ZE; NS) to%recater degree
than the steady-state FAM rule (ZE, ZE; ZE) since in this example an angle value of 15
degrees is more a small but positive angle value than a zero angle value.

The data similarly activate the other 13 FAM rules. We combine the resulting minimum-
scaled consequent fuzzy sets according to (17) by summing pointwise. We can then com-
pute the fuzzy centroid with equation (19), with perhaps integrals replacing the discrete
sums, to determine the specific output motor velocity v. In Chapter 19 we show that, for
symmetric fuzzy sets of quantization, the centroid can always be computed exactly with
simple discrete sums even if the fuzzy sets are continuous. In many realtime applications
we must repeat this entire FAM inference procedure hundreds, perhaps thousands, of times
per second. This requires fuzzy VLSI or optical processors.

Figure 17.4 illustrates this equal-weight additive combination procedure for just the
FAM rules (ZE,ZE; ZE) and (PS,ZE; NS). The fuzzy-centroidal motor velocity value

in this case is -3.
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FAM Rulc (PS.NS.NS)
IF 8 « PS AND 49 = 2E,
€ THEN V = NS

FAM Rule (ZE ZE;2E)
IF 0 = 2E AND 40 = 2E,
THEN V = 2E

- . \

R H) +
ty
[

FIGURE 17.4 FAM correlation-minimum inference procedure. The FAM
system consists of the two two-antecedent FAM rules (PS,ZE; NS) and

(ZE,ZE; ZE). The input angle datum is 15, and is more a small but pos-
itive angle value than a zero angle value. The input angular velocity datum
is -10, and is only a zero angular velocity value to degree .5. Antecedent fit
values are combined with minimum since the antecedent terms are combined
conjunctively with AND. The combined fit value then scales the consequent
fuzzy set wit}; pairwise minimum. The minimum-scaled output fuzzy sets are
added pointwise. The fuzzy centroid of this output waveform is computed and

yields the system output velocity value -3.

Multi-Antecedent FAM Rules: Decompositional Inference

The BIOFAM inference procedure treats antecedent fuzzy sets as if they were propo-

sitions with fuzzy truth values. This is because fuzzy logic corresponds to 1-dimensional
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fuzzy set thcory and because we use binary or exact inputs. We now formally develop the
connection between BIOFAMs and the FAM theory presented earlier.

Consider the compound FAM rule “IF X is A AND Y is B ,THEN C is Z,7
or (A, B; C) for short. Let the universes of discourse X, Y, and Z have dimensions n, p,
and g: X = {z1,...,%.}, Y = {y1,...,¥p}yand Z = {z1,...,2,}. We can directly
extend this framework to multiple antecedent and consequent terms.

In our notation X, Y, and Z are both universes of discourse and fuzzy variables. The
fuzzy variable X can assume the fuzzy set values A,, A,,..., and similarly for the fuzzy
variables Y and Z. When controlling an inverted pendulum, the identification “X is A”
might represent the natural-language description “The pendulum angle is positive but
small.”

What is the matrix representation of the FAM rule (A, B; C)? The question is nontriv-
ial since A, B, and C are fuzzy subsets of different universes of discourse, points in different
unit cubes. Their dimensions and interpretations differ. Mamdani [1977] and others have
suggested representing such rules as fuzzy multidimensional relations or arrays. Then the
FAM rule (A, B; C) would be a fuzzy subset of the product space X x Y x Z. This rep-
resentation is not used in practice since only exact inputs are presented to FAM systems
and the BIOFAM procedure applies. If we presented the system with a genuine fuzzy set
input, we would no doubt preprocess the fuzzy set with a centroidal or maximum-fit-value
technique so we could still apply the BIOFAM inference procedure.

We present an alternative representation that decomposes, then recomposes, the FAM
rule (A, B; C) in accord with the FAM inference procedure. This representation allows
neural networks to adaptively estimate, store, and modify the decomposed FAM rules. The
representation requires far less storage than the multidimensional-array representation.

Let the fuzzy Hebb matrices M4sc and Mpc store the simple FAM associations (A4, C)
and (B,C):

MA(; = AT o C y (20)

Mge = BT o C . (21)




The fuzzy Hebb matrices M4c and Mg split the compound FAM rule (A, B; C). We can
construct the splitting matrices with corrclation-product encoding.

Let IY = (0...010...0) be an n-dimensional bit vector with ith element | and all
other clements 0. I is the ith row of the n-by-n identity matrix. Similarly, /7, and /% are
the respective yth and Ath rows of the p-by-p and g-by-q identity matrices. The bit vector
Ij\- represents the occurrence of the exact input z;.

We will call the proposed FAM representation scheme FAM decompositional infer-
ence, in the spirit of the max-min compositional inference scheme discussed above. FAM
decompositional inference decomposes the compound FAM rule (A, B; C) into the com-
ponent rules (A,C) and (B,C). The simpler component rules are processed in parallel.
New fuzzy set inputs A’ and B’ pass through the FAM matrices Mac and Mge. Max-min

composition then gives the recalled fuzzy sets C4 and Cg::

CAI = A’ o] A1AC ) (22)
Cg = B o Mgc . (23)

The trick is to recompose the fuzzy sets C 4. and Cp. with intersection or union according
as the antecedent terms “X is A” and “Y is B” are combined with AND or OR. The negated
antecedent term “X is NOT A” requires forming the set complement C¢, for input fuzzy

set A'.
Suppose we present the new inputs A" and B’ to the single-FAM-rule system F' that

stores the FAM rule (A, B; C). Then the recalled output fuzzy set C’ equals the intersec-

tion of C4 and Cpy:

I“(AI, B’) = [Al o A‘IA(,‘] N [B' (o) /”n(*]
= Cs N Cy (24)
=

-

We can then defuzzify C/, if we wish, to yield the exact output /5.
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The logical connectives apply to the antecedent terms of different dimension and mean-
ing. Decompositional inference applies the set-theoretic analogues of the logical connectives
to subsets of Z. Of course all subsets C’ of Z have the same dimension and meaning.

We now prove that decompositional inference generalizes BIOFFAM inference. This gen-
eralization is not simply formal. It opens an immediate path to adaptation with arbitrary
ncural network techniques.

Suppose we present the exact inputs z; and y; to the single-FAM-rule system F that
stores (A, B; C). So we present the unit bit vectors I and I,’; to F' as nonfuzzy set inputs.

Then

Flziy;) = Fy, 1) = Ux o Mac] N (I3 o Mgc]
= a; A\ C n bj A C (25)
= min(a;, b_,) AN C . (26)

(25) follows from (8). Representing C with its membership function mc, (26) is equivalent

to the BIOFAM prescription

min(a;, b;) A mc(z) (27)

for all zin Z.
If we encode the simple FAM rules (4, C) and (B, C) with correlation-product encodixng,

decompositional inference gives the BIOFAM version of correlation-product inference:

P, = [Ty o ATC) n (I} o B'C]

= C n 1)]' C (28)
= min(a;, b;) C (29)
= min(a;, b;) mc(z) (30)

for all z in Z. (13) implies (28). min(a; cx, b; &) = min(ai, b;) e implies (29).
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Decompositional inference allows arbitrary fuzzy sets, waveforms, or distributions A’
and B’ to be applied to a FAM system. The FAM system can house an arbitrary FAM
bank of compound FAM rules. If we use the FAM system to control a process, the input
fuzzy sets A’ and B’ can be the output of an independent state-estimation system, such
as a Kalman filter. A" and B’ imight then represent probability distributions on the exact
mput spaces X and Y. The filter-controller cascade is a common enginecring architecture.

We can split compound consequents as desired. We can split the compound FAM rule
“I" X is A AND Y is B,THEN Zis C OR W is D, or(A,B; C,D),
into the FAM rules (A4, B; C) and (A, B; D). We can use the same split if the consequent
logical councctive 1s AND.

We can give a propositional-calculus justification for the decompositional inference
technique. Let A, B, and C be bivalent propositions with truth values t(A), t(B), and
t(C) in {0,1}. Then we can construct truth tables to prove the two consequent-splitting

tautologies that we use in decompositional inference:

[A — (BORC) — [(A — B) OR (A — C)] , (31)
[A — (BANDC)] — [(A — B)AND (A — ()], (32)

where the arrow represents logical implication.

In bivalent logic, the implication A — B is false iff the antecedent A is true and the
consequent B is false. Equivalently, t{{(A4 -~ B) = 1iff t{(A) = 1 and ¢{B) = 0.
This allows a “brief” truth table to be constructed to check for validity. We chose truth
values for the terms in the consequent of the overall implication (31) or (32) to make
the consequent false. Given those restrictions, if we cannot find truth values to make the
antecedent true, the statement is a tautology. In (31),if ¢{((A — B) OR (A - C)) = 0,
then *{."}) = land ¢{(B) = ¢(C) = 0, since a disjunction is false ff both disjuncts are
falsc. This forces the antecedent A — (I3 OR C) to be false. So (31) i1s a tautology: It
is true i all cases.

We can also justify splitting the compound FAM rule “IF X is A OR Y is D,
THEN 7 is € 7 into the disjunction (union) of the two simple FAM rules “IFF X is A,
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THEN 7Z is C”and “IF Y is B, THEN Z is C ™ with a propositional tautology:

(A OR B) — C] — [(A — C) OR (B — C)] . (33)

Now consider splitting the original compound FAM rule “IF X is A AND Y is B,
THEN Z is C " into the conjunction (intersection) of the two simple FAM rules “IF X
is A, THEN Z is C” and “IF Y is B, THEN Z is C.” A problem arises when

we examine the truth table of the corresponding proposition

[(A AND B) — C] — [(A — C) AND (B — ()] . (34)

The problem is that (34) is not always true, and hence not a tautology. The implication
1s false if A is true and B and C are false, or if A and C are false and B is true. But the
implication (34) is valid if both antecedent terms A and B are true. Soif t{(A) = ¢(B) = 1,
the compound conditional (A AND B) — C impliesboth A — Cand B — C.

The simultaneous occurrence of the data values z; and y; satisfies this condition. Recall
that logic is 1-dimensional set theory. The condition ¢(A) = t(B) = 1is given by the 1 in
I and the 1 in I};. We can interpret the unit bit vectors I and [, as the (true) bivalent
propositions “X is z;” and “Y is y;.” Propositional logic applies coordinate-wise. A
similar argument holds for the converse of (33).

For general fuzzy set inputs A’ and B’ the argument still holds in the sense of continuous-
valued logic. But the truth values of the logical implications may be less than unity while
greater than zero. If A’ is a null vector and B’ is not, or vice versa, the implication (34)
is false coordinate-wise, at least if one coordinate of the non-null vector is unity. But in
this case the decompositional inference scheme yields an output null vector C’. In effect

the FAM system indicates the propositional falschood.

Adaptive Decompositional Inference
The decompositional inference scheme allows the splitting matrices M ¢ and Mpe to
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be arbitrary. Indeed it allows them to be climinated altogether.

Let Nx @ I™ — ]9 be an arbitrary neural nctwork system that maps fuzzy subscts A’
of X to fuzzy subsets C' of Z. Ny : ]? — |9 can be a different neural network. In general
Nyx and Ny are time-varying.

The adaptive decompositional inference (ADI) scheme allows compound FAM rules to
be adaptively split, stored, and modified by arbitrary neural networks. The compound
FAM rule “IF X is A AND Y is B, THEN Z is C,” or (A, B; C), can be split
by Nx and Ny. Nx can house the simple FAM association (A, C). Ny can house (B, C).
Then for arbitrary fuzzy set inputs A’ and B’, ADI proceeds as before for an adaptive

FAM system F:  [" x I? — I? that houses the FAM rule (A, B; C) or a bank of such
FAM rules:

F(AI,BI) = N,\'(A’) N N)'(B’) (35)
= Cuq N Cg
= '

Any neural network technique can be used. A reasonable candidate for many un-
structured problems is the backpropagation algorithm applied to several small feedforward
multilayer networks. The primary concerns are space and training time. Several small
neural networks can often be trained in parallel faster, and more accurately, than a single

large neural network.

The ADI approach illustrates one way ncural algorithms can be embedded in a FAM

architecture. Below we discuss another way that uses unsupervised clustering algorithms.

ADAPTIVE FAMs: PRODUCT-SPACE CLUSTERING
IN FAM CELLS

An adaptive FAM (AFAM) is a tunc-varying mapping between fuzzy cubes. In

principle the adaptive decompositional inference technique generates AFAMs. But we
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shall reserve the label AFAM for systems that generate FAM rules from training data but
that do not require splitting and recombining FAM data.

We propose a gecometric AFAM procedure. The procedure adaptively clusters training
samples in the FAM system input-output product space. FAM mappings are balls or clusters
in the input-output product space. These clusters are simply the fuzzy Hebb matrices
discussed above. The procedure “blindly” generates weighted FAM rules from training
data. Further training modifies the weighted set of FAM rules. We call this unsupervised
procedure product-space clustering.

Consider first a discrete 1-dimensional FAM system S: I* — [I?. Then a FAM rule
has the form “IF X is A;, THEN Y is B;” or (A;, B:). The input-output product
spacc is I™ x IP.

What does the FAM rule (A;, B;) look like in the product space I™ x IP?7 It looks like a
cluster of points centered at the numerical point (A;, B;). The FAM system maps points
A near A; to points B near B;. The closer A is to A;, the closer the point (A, B) is to the
point (A;, B;) in the product space I™ x I?. In this sense FAMs map balls in I™ to balls
in I?. The notation is ambiguous since (A;, B;) stands for both the FAM rule mapping,
or fuzzy subset of I™ x I?, and the numerical fit-vector point in I™ x IP.

Adaptive clustering algorithms can estimate the unknown FAM rule (A;, B;) from train-
ing samples of the form (A, B). In general there are m unknown FAM rules (A, By), ...,
(Am, Br). The number m of FAM rules is also unknown. The user may select m arbitrarily
in many applications.

Competitive adaptive vector quantization (AVQ) algorithms can adaptively estimate
both the unknown FAM rules (4;, B;) and the unknown number m of FAM rules from
FAM system input-output data. The AVQ algorithms do not require fuzzy-set data. Scalar
BIOFAM data suffices, as we illustrate below for adaptive estimation of inverted-pendulum
control FAM rules.

Suppose the r fuzzy sets Ay, ..., A, quantize the input universe of discourse X. The
s fuzzy sets I3y, ..., B, quantize the output universe of discourse Y. In general r and s
arc unrelated to ecach other and to the number m of FAM rules (A;, B;). The user must

specify » and s and the shape of the fuzzy sets A; and B,. In practice this is not difficult.
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Quantizing fuzzy scts are usually trapezoidal, and r and s are les: than 10.

The quantizing collections {A;} and {B;} definc rs FAM cells F;; in the input-output
product spacc I™ x [?. The FAM cells F;; overlap since contiguous quantizing fuzzy sets A;
and A4, and B;j and Bj41, overlap. So the FAM cell collection {F;;} does not partition
the product space I™ x I?. The union of all FAM cells also does not equal I™ x I? since
the patches F;; are fuzzy subsets of I™ x IP. The union provides only a fuzzy “cover” for
I" x IP.

The fuzzy Cartesian product A; x B; defines the FAM cell Fj;. A; x B; is just the
fuzzy outer product AT o B; in (6) or the correlation product AT B; in (12). So a FAM cell

F;; is simply the fuzzy correlation-minimum or correlation-product matrix M;; : F}; = M;;.

Adaptive FAM Rule Generation

Let m,,...,my be k quantization vectors in the input-output product space I™ x I?
or, equivalently, in I"*?. m; is the jth column of the synaptic connection matrix M. M
has n 4 p rows and & columns.

Suppose, for instance, m; changes in time according to the differential competitive
learning (DCL) AVQ algorithm discussed in Chapters 6 and 9. The competitive system
samples concatenated fuzzy set samples of the form [A|B]. The augmented fuzzy set [A|B]
is a point in the unit hypercube I™*7.

The synaptic vectors m; converge to FAM matrix centroids in /™ x /7. More generally
they estimate the density or distribution of the FAM rules in I™ x I?. The quantizing
synaptic vectors naturally weight the estimated FAM rule. The more synaptic vectors
clustered about a centroidal FAM rule, the greater its weight w; in (17).

Suppose there are 15 FAM-rule centroids in I™ x I” and k > 15. Suppose k; synaptic
vectors m; cluster around the ith centroid. So ky + ... + k5 = k. Suppose the cluster

counts k; are ordered as




The first centroidal FAM rule is as at least as {requent as the second centroidal FAM

rule, and so on. This gives the adaptive FAM-rule weighting scheme

w = — . (37)

The FAM rule weights w; evolve in time as new augmented fuzzy sets [A|B] are sampled.
In practice we may want only the 15 most-frequent FAM rules or only the FAM rules with
at least some minimum frequency wmyi,. Then (37) provides a quantitative solution.

Geometrically we count the number £;; of quantizing vectors in each FAM cell F;;. We
can define FAM-cell boundaries in advance. High-count FAM cells outrank low-count FAM
cells. Most FAM cells contain zero or few synaptic vectors.

Product-space clustering extends to compound FAM rules and product spaces. The
FAM rule “IF X is A AND Y is B, THEN Z is C”, or (A, B; C), is a point in
I™ x I” x 1. The t fuzzy sets Cy,...,C; quantize the new output space Z. There are
rst FAM cells Fijx. (36) and (37) extend similarly. X, Y, and Z can be continuous. The

adaptive clustering procedure extends to any number of FAM-rule antecedent terms.

Adaptive BIOFAM Clustering

BIOFAM data clusters more efficiently than fuzzy-set FAM data. Paired numbers are
easier to process and obtain than paired fit vectors. This allows system input-output data
to directly generate FAM systems.

In control applications, human or automatic controllers generate streams of “well-
controlled” system input-output data. Adaptive BIOFAM clustering converts this data
to weighted FAM rules. The adaptive system transduces behavioral data to behavioral
rules. The fuzzy system learns causal patterns. It learns which control inputs cause which
control outputs. The system approximates these causal patterns when it acts as the con-
troller.

Adaptive BIOFAMs cluster in the input-output product space X x Y . The product

space X x Y is vastly smaller than the power-set product space I™ x I” used above. The
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adaptive synaptic vectors m; are now 2-dimensional instead of n + p-dimensional. On
the other hand, competitive BIOFAM clustering requires many more input-output data
pairs (x;,y:) ¢ R? than augmented fuzzy-sct samples [A|B] ¢ [P

Again our notation is ambiguous. We now use z; as the numerical sample from X
at sample time 7. Earlier z; denoted the ith ordered element in the finite nonfuzzy set
X = {z1,...,7a}. One advantage is X can be continuous, say R".

BIOFAM clustering counts synaptic quantization vectors in FAM cells. The system
samples the nonfuzzy input-output stream (zy,y1),(2,¥2),-.. Unsupervised competitive
learning distributes the & synaptic quantization vectors my,...,mg in X x Y. Learning
distributes them to different FAM cells F;;. The FAM cells F}; overlap but are nonfuzzy
subcubes of X x Y. The BIOFAM FAM cells F;; cover X x Y.

F;; contains k;; quantization vectors at each sample time. The cell counts k;; define a
frequency histogram since all &;; sum to k. So w;; = ﬁkl weights the FAM rule “IF X is
A;,, THENY is B,.”

Suppose the pairwise-overlapping fuzzy sets NL, NM, NS, ZE,P S, PM, PL quan-
tize the input space X. Suppose seven similar fuzzy sets quantize the output space Y. We
can define the fuzzy sets arbitrarily. In practice they are normal and trapezoidal. (The
boundary fuzzy sets NL and PL are ramp functions.) X and Y may each be the real line.
A typical FAM rule is “IF X is NL, THEN Y is PS.”

Input datum z; is nonfuzzy. When X = z; holds, the relations X = NL,...,X = PL
hold to different degrees. Most hold to degree zero. X = N A holds to degree myp(z;)-
Input datum z; partially activates the FAM rule “IF X is NM, THEN Y is ZE” or,
equivalently, (NM; ZF). Since the FAM rules have single antecedents, z; activates the
consequent fuzzy set Z [ to degree mpas(x;) as well. Multi-antecedent FAM rules activate
output consequent sets according to a logic-based function of antecedent term membership
values, as discussed above on BIOFAM nference.

Suppose Figure 17.5 represents the input-output data stream (zy,y1), (z2,¥2),- .. in the

planar product space X x Y:
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FIGURE 17.5 Distribution of input-output data (z;, y;) in the input-output
product space X x Y. Data clusters reflect FAM rules, such as the steady-state
FAM rule “IF X is ZE, THEN Y is ZE".

Suppose the sample data in Figure 17.5 trains a DCL system. Suppose such competi-

tive learning distributes ten 2-dimensional synaptic vectors my,...,myo as in Figure 17.6:




NL NM NS ZE PS PM PL
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X zE o,
[
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FIGURE 17.6  Distribution of ten 2-dimensional synaptic quantization vec-
tors my, ..., myg in the input-output product space X xY. As the FAM system
samples nonfuzzy data (z;,y;), competitive learning distributes the synaptic
vectors in X X Y. The synaptic vectors estimate the frequency distribution of

the sampled input-output data, and thus estimate FAM rules.

I'AM cells do not overlap in Figures 17.5 and 17.6 for convenience’s sake. The corre-
sponding quantizing fuzzy sets touch but do not overlap.

Figure 17.5 reveals six sample-data clusters. . The six quantization-vector clusters in
Figure 17.6 estimate the six sample-data clusters. The single synaptic vector in FAM cell
(PM; NS) indicates a smaller cluster. Since & = 10, the number of quantization vectors
in each FAM cell measures the percentage or frequency weight w,; of each possible 'AM

rule.
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In general the additive combination rule (17) does not recuire normalizing the quantization-

vector count k;j. w,; = ki; is acceptable. This holds for both maximum-membership de-
fuzzification (18) and fuzzy centroid defuzzification (19). These defuzzification schemes
prohibit only negative weight values.

The ten quantization vectors in Figure 17.6 estimate at most six FAM rules. From most
to least frequent or “important”, the FAM rules are (ZE; ZE), (PS; NS), (NS; PS),
(PM; NS), (PL; NL),and (NL; PL). These FAM rules suggest that fuzzy variable X is
an error variable or an error velocity variable since the stecady-state FAM rule (ZE; ZE) is
most important. If we sample a system only in steady-state equilibrium, we will estimate
only the steady-state FAM rule. We can accurately estimate the FAM system’s global
behavior only if we representatively sample the system’s input-output behaviar.

The “corner” FAM rules (PL; NL) and (NL; PL) may be more important than their
frequencies suggest. The boundary sets Negative Large (NL) and Positive Large (PL)
are usually defined as ramp functions, as negatively and positively sloped lines. NL and
PL alone cover the important end-point regions of the universe of discourse X. They give
mpyr(z) = mpr(z) = 1onlyif zis at or near the end-point of X, since NL and PL are
ramp functions not trapezoids. NL and PL cover these end-point regions “briefly”. Their
corresponding FAM cells tend to be smaller than the other FAM cells. The end-point
regions must be covered in most control problems, especially error nulling problems like
stabilizing an inverted pendulum. The user can weight these FAM-cell counts more highly,
for instance w;; = c k;; for scaling constant ¢ > 0. Or the user can simply include these
end-point FAM rules in every operative FAM bank.

Most FAM cells do not generate FAM rules. More accurately, we estimate every possible
FAM rule but usually with zero or near-zero frequency weight w;;. For large numbers of
multiple FAM-rule antecedents, system input-output data streams through comparatively
few FAM cells. Structured trajectories in X x Y are fe'v.

A FAM-rule’s mapping structurc also limits the number of estimated FAM rules. A
FAM rule maps fuzzy sets in I™ or F(2%) to fuzzy sets in I? or F(2V). A fuzzy associative
memory maps every domain fuzzy set A to a unique range fuzzy set 3. Fuzzy set A cannot

map to multiple fuzzy sets B, B', B”, and so on. We write the FAM rule as (A; B) not
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(A° Bor B'or B" or...). So we estimate at most one rule per FAM-cell row in Figure
17.6.

If two FAM cells in a row arc cqually and highly frequent, we can pick arbitrarily either
FAM rule to include in the FAM bank. This occurs infrequently but can occur. In principle
we could estimate the FAM rule as a compound FAM rule with a disjunctive consequent.
The simplest strategy picks only the highest frequency FAM cell per row.

The user can estimate FAM rules without counting the quantization vectors in each
FAM cell. There may be too many FAM cells to secarch at each estimation iteration.
The user never need examine FAM cells. Instead the user checks the synaptic vector
components m;;. The uscr defines in advance fuzzy-set intervals, such as [Ing,uny] for
NL. If Iyy < my; < upy, then the FAM-antecedent reads “IIF X is NL.” .

Suppose the input and output spaces X and Y are the same, the real interval [-35, 35].

Suppose we partition X and Y into the same seven disjoint fuzzy sets:

NL = [35, -25]
NM = [-25, -15]

NS = [15, -5] )
ZE = [-5, 5]

PS = [5, 15]

PM = [15, 25]

PL = [25, 35]

Then the observed synaptic vector m; = [9, —10] increases the count of FAM cell

PS x NS and increases the weight of FAM rule "IF X is PS, THEN Y is NS.”

This amounts to nearest-neighbor classification of synaptic quantization vectors. We
assign quantization vector my to FAM cell F;; iffl mi is closer to the centroid of [ than
to all other FAM-cell centroids. We break ties arbitrarily. Centroid classification allows

the FAM cells to overlap.
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Adaptive BIOFAM Example: Inverted Pendulum

We used DCL to train an AFAM to control the inverted pendulum discussed above.
We used the accompanying C-software to generate 1,000 pendulum trajectory data. These
product-space training vectors (0, A0, v) were points in ®. Pendulum angle 0 data
ranged between —90 and 90. Pendulum angular veclocity Af data ranged from —150 to
150.

We defined FAM cells by uniformly partitioning the effective product space. Fuzzy
variables could assume only the five fuzzy set values NM, NS, ZE, PS, and PM. So
there were 125 possible FAM rules. For instance, the steady-state FAM rule took the form
(ZE, ZE; ZFE) or, more completely, “IF 0 = ZE ANDAO = ZI, THENv = ZE.”

A BIOFAM controlled the inverted pendulum. The BIOFAM restored the pendulum
to equilibrium as we knocked it over to the right and to the left. (Function keys F9 and
F10 knock the pendulum over to the left and to the right. Input-output sample data
reads automatically to a training data file.) Eleven FAM rules described the BIOFAM
controller. Figure 17.1 displays this FAM bank. Observe that the zero (ZE) row and

column are ordinal inverses of the respective row and column indices.

0

NM NS Z PS PM

NM PM

NS PS | Z

AO z|pem|pPs | z |Ns [NM

PS Z | NS

PM NM

FIGURE 17.7 Inverted-pendulum FAM bank used in simulation. This
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BIOFAM generated 1,000 sample vectors of the form (0, A0, v).

We trained 125 3-dimensional synaplic quantization vectors with differential compet-
itive learning, as discussed in Chapters 4,6, and 9. In principle the 125 synaptic vectors
could describe a uniform distribution of product-space trajectory data. Then the 125
FAM cells would each contain one synaptic vector. Alternatively, if we used a vertically
stabilized pendulum to generate the 1,000 training vectors, all 125 synaptic vectors would
concentrate in the (ZE, ZE; ZE) FAM cell. This would still be true if we only mildly
perturbed the pendulum from vertical equilibrium.

DCL distributed the 125 synaptic vectors to 13 FAM cells. So we estimated 13 FAM
rules. Some FAM cells contained more synaptic vectors than others. Figure 17.8 displays
the synaptic-vector histogram after the DCL samples the 1,000 samples. Actﬁally Figure
17.8 displays a truncated histogram. The horizontal axis should list all 125 FAM cells,
all 125 FAM-rule weights w; in (17). The missing 112 entries have zero synaptic-vector
frequency.

Figure 17.8 gives a snapshot of the adaptive process. In practice, and in principle,
successive data gradually modify the histogram. “Good” training samples should include
a significant number of equilibrium samples. In Figure 17.8 the steady-state FAM cell

(ZE, ZE; ZE) is clearly the most frequent.

5)




20

Frequency (%)

10

3 8 9 10 11 12 13 14 15 16 17 18 23

FIGURE 17.8 Synaptic-vector histogram. Differential compctitive learn-
ing allocated 125 3-dimensional synaptic vectors to the 125 FAM cells. Here
the adaptive system has sampled 1,000 representative pendulum-control data.
DCL allocates the synaptic vectors to only 13 FAM cells. The steady-state
FAM cell (ZE, ZE; ZF) is most frequent.

Figure 17.9 displays the DCL-estimated FAM bank. The product-space clustering
method rapidly recovered the 11 original FAM rules. It also estimated the two additional
FAM rules (PS, NM; ZFE) and (NS, PM; ZE), which did not affect the BIOFAM
system’s performance. The estimated FAM bank defined a BIOFAM, with all 13 FAM-
rule weights set w; equal to unity, that controlled the pendulum as well as the original

BIOFAM did.
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FIGURE 17.9 DCL-estimated FAM bank. Product-space clustering re-
covered the original 11 FAM rules and estimated two new FAM rules. The new

and original BIOFAM systems controlied the inverted pendulum equally well.

In nonrealtime applications we can in principle omit the adaptive step altogether. We
can directly compute the FAM-cell histogram if we exhaustively count all sampled data.
Then the (growing) number of synaptic vectors equals the number of training samples. This
procedure cqually weights all samples, and so tends not to “track™ an evolving process.
Competitive learning weights more recent samples more heavily. Competitive learning’s

metrical-classification step also helps filter noise from the stream of sample data.
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PROBLEMS

1. Use correlation-minimum encoding to construct the FAM matrix M from the fit-
vector pair (A, B)if A = (61.2.9)and B = (.8.31). Is (A4, B) a bidirectional
fixed point? Pass A’ = (.2.9 .3 .2) through M and B’ = (.9 .5 1) through M7.
Do the recalled fuzzy sets differ from B and A?




Repeat Problem 1 using correlation-product encoding.
Compute the fuzzy entropy E(M) of M in Problems 1 and 2.

If M = A” o B in Problem 1, find a different FAM matrix M’ with greater fuzzy
entropy, E(M') > E(M), but that still gives perfect recal: A o M’ = B.
Find the marimum entropy fuzzy associative memory (MEFAM) matrix M* such

that A o M* = B.

Prove: M = AT o B oo M = ATB,Ao M = B,and A C A, then
A o M = B.

. Prove: max min(at, 6:) < min{ max ar, max bg).
<k<m (@, bx) < (15k5m kb <klm k)

1<k

Use truth tables to prove the two-valued propositional tautologies:

() [A— (BORC) — [(A—B) OR (A —C)],
(b) [A— (BANDC) — [(A— B) AND (A —C)] ,
(c) [(AORB)—C] — [(A—C) OR (B— Q) ,
(d) [(A— C)AND(B —C)] — [(A AND B) — (] .

Is the converse of (¢) a tautology? Explain whether this affects BIOFAM inference.

BIOFAM inference. Suppose the input spaces X and Y arc both [~10,10], and the
output space Z is [—100,100]. Define five trapezoidal fuzzy sets-NL, NS, ZE, PS, PL—
on X, Y, and Z. Suppose the underlying (unknown) system transfer function is

z = z? — y?. State at least five FAM rules that accurately describe the system’s

(13
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behavior. Use 2 = 2?2 — g2 to generate strcams of sample data. Use BIOFAM in-
ference and fuzzy-centrcid defuzzification Lo map input pairs (z,y) to output data z.
Plot the BIOFAM outputs and the desired outputs z. What is the arithmetic average
of the squared errors (F(z,y) — z? + y*)?? Divide the product space X xY x Z
into 125 overlapping FAM cells. Estimate FAM rules from clustered system data

(z,y,2). Use these FAM rules to control the system. Evaluate the performance.

Software Problems

The following problems use the accompanying FAM software for controlling an inverted

pendulum.

1. Explain why the pendulum stabilizes in the diagonal position if the pendulum bob
mass increases to maximum and the motor current decreases slightly. The pendulum

stabilizes in the vertical position if you remove which FAM rules?
[§

2. Oscillation results if you remove which FAM rules? The pendulum sticks in a hori-

zontal equilibrium if you remove which FAM rules?

N )
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ABSTRACT

We compared fuzzy and Kalman-filter control systems for realtime target tracking.
Both systems performed well, but in the presence of mild process (unmodeled effects) noise
the fuzzy system exhibited finer control. We tested the robustness of the fuzzy controller
by removing random subsets of fuzzy associations or “rules” and by adding destructive or
“sabotage” fuzzy rules to the fuzzy system. We tested the robustness of the Kalman track-
ing system by increasing the variance of the unmodeled-effects noise process. The fuzzy
controller performed well until we removed over 50% of the fuzzy rules. The Kalman con-
troller’s performance quickly degraded as the unmodeled-effects variance increased. We
used unsupervised neural-network learning to adaptively generate the fuzzy controller’s
fuzzy-associative-memory structure. The fuzzy systems did not require a mathematical

model of how system outputs depended on inputs.




Fuzzy and Math-Model Controllers

Fuzzy controllers differ from classical math-model controllers. Fuzzy controllers do
not require a mathcmatical model of how control outputs functionally depend on control
inputs. Fuzzy controllers also differ in the type of uncertainty they represent and how they
represent it. The fuzzy approach represents ambiguous or fuzzy system behavior as partial
implications or approximate “rules of thumb”—as fuzzy associations (A;, B;).

Fuzzy controllers are fuzzy systems. A finite fuzzy set A is a point [Kosko, 1987] in
a unit hypercube I = [0,1]*. A fuzzy system F : I* — IP is a mapping between
unit hypercubes. I™ contains all fuzzy subsets of the domain space X = {z1,...,z.}-
I™ is the fuzzy power set F(2X) of X. I? contains all the fuzzy subsets of _t_he range
space Y = {y1,...,yp}. Element z; ¢ X belongs to fuzzy set A to degree m4(z;). The 2"
nonfuzzy subsets of X correspond to the 2" corners of the fuzzy cube I™. The fuzzy system
F maps fuzzy subsets of X to fuzzy subsets of Y. In general, X and Y are continuous not
discrete sets.

Math-model controllers usually represent system uncertainty with probability dis-
tributions. Probability models describe system behavior with first-order and second-order
statistics—with conditional means and covariances. They usually describe unmodeled ef-
fects and measurement imperfections with additive “noise” processes.

Mathematical models of the system state and measurement processes facilitate a mean-
squared-error analysis of system behavior. In general we cannot accurately articulate such
mathematical models. This greatly restricts the range of realworld applications. In practice
we often use linear or quasi-linear (Markov) mathematical models.

Mathematical state and measurement models also make it difficult to add non-mathem-
atical knowledge to the system. Experts may articulate such knowledge, or ncural networks
may adaptively infer it from sample data. In practice, once we have articulated the math
model, we use human expertise only to estimate the initial state and covariance conditions.

Fuzzy controllers consist of a bank of fuzzy associative memory (FAM) “rules” or

associations (A, B;) operating in parallel, and operating to different degrees. Each FAM




rule is a set-level implication. It represents ambiguous expert knowledge or learned input-
output transformations. A FAM rule can also summarize the behavior of a specific math-
ematical model. The system nonlinearly transforms exact or fuzzy state inputs to a fuzzy
set output. This output fuzzy set is usually “defuzzified” with a centroid operation to
generate an exact numerical output. In principle the system can use the entire fuzzy dis-
tribution as the output. We can easily construct, process, and modify the FAM bank of
FAM rules in software or in digital VLSI circuitry.

Fuzzy controllers require that we articulate or estimate the FAM rules. The fuzzy-set
framework provides more expressiveness than, say, traditional expert-system approaches,
which encode bivalent propositional associations. But the fuzzy framework does not elimi-
nate the burden of knowledge acquisition. We can use neural network systems. to estimate
the FAM rules. But neural systems also require an accurate (statistically representative)
set of articulated input-output numerical samples. Below we use unsupervised competitive
learning to adaptively generate target-tracking FAM rules.

Experts can hedge their system descriptions with fuzzy concepts. Although fuzzy con-
trollers are numerical systems, experts can contribute their knowledge in natural language.
This is especially important in complex problem domains, such as economics, medicine,
and history, where we may not know how to mathematically model system behavior.

Below we compare a fuzzy controller with a Kalman-filter controller for realtime target
tracking. This problem admits a simple and reasonably accurate mathematical description
of its state and measurement processes. We chose the Kalman filter as a benchmark because
of its many optimal linear-systems properties. We wanted to see whether this “optimal”
controller remains optimal when compared with a computationally lighter fuzzy controller
in diffcient uncertainty environments.

We indirectly compared the sensitivity of the two controllers by varying their system
uncertainties. We randomly removed FAM rules from the fuzzy controller. We also added
“sabotage” FAM rules to the controller. Both techniques modeled less-stuctured control
environments. For the Kalman filter, we varied the noise variance of the unmodeled-effects
NOISC process.

Both systems performed well for mildly uncertain target environments. They degraded




differently as the system uncertainty increases. The fuzzy controller’s performance de-
graded when we removed more than half the FAM rules. The Kalman-filter controller’s

performance quickly degraded when the additive state noise process increased in variance.

Realtime Target Tracking

A target tracking system maps azimuth-elevation inputs to motor control outputs. The
nominal target moves through azimuth-elevation space. Two motors adjust the position
of a platform to continuously point at the target.

The platform can be any directional device that accurately points at the target. The
device may be a laser, video camera, or high-gain antenna. We assume we have available
a radar or other device that can detect the direction from the platform to the target.

The radar sends azimuth and elevation coordinates to the tracking system at the end
of each time interval. We calculate the current error ¢, in platform position and change in
error é;. Then a fuzzy or Kalman-filter controller determines the control outputs for the
motors, one each for azimuth and elevation. The control outputs reposition the platform.

We can independently control movement along azimuth and elevation if we apply the
same algorithm twice. This reduces the problem to matching the target’s position and
velocity in only one dimension.

Figure 1 shows a block diagram of the target tracking system. The controller’s output
vk gives the estimated change in angle required during the next time interval. In principle

a hardware system must transduce the angular velocity v, into a voltage or current.
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FIGURE 1  Target tracking system.

FUZZY CONTROLLER

We restrict the output angular velocity v of the fuzzy controller to the interval [—6, 6].
So we must insert a gain element before the voltage transduction. This gain must equal
one-sixth the maximum angle through which the platform can turn in one time interval.
Similarly, the position error e, must be scaled so that 6 equals the maximum error. The
product of this scale factor and the output gain provides a design parameter—the “gain”
of the fuzzy controller.

The fuzzy controller uses heuristic control set-level “rules” or fuzzy associative memory
(FAM) associations based on quantized values of ei, ¢, and vi_;. We define seven fuzzy

levels by the following library of fuzzy-set values of the fuzzy variables ey, éx, and vi_y:

n




LN : Large Negative
MN : Mecdium Negative
SN : Small Negative
ZE - Zero

SP : Small Positive
MP : Medium Positive

LP : Large Positive

We do not quantize inputs in the classical sense that we assign each inpu£ to exactly
one output level. Instead, each linguistic value equals as a fuzzy set that overlaps with
adjacent fuzzy sets. The fuzzy controller uses trapezoidal fuzzy-set values, as Figure 2
shows. The lengths of the upper and lower bases provide design parameters that we must
calibrate for satisfactory performance. A good rule of thumb is adjacent fuzzy-set values
should overlap approzimately 25 percent. Below we discuss examples of calibrated and
uncalibrated systems. The fuzzy controller attained its best performance with upper and

lower bases of 1.2 and 3.9—26.2% overlap. Different target scenarios may require more or

less overlap.

2 T T v —T T T T
1.5 .
- LN _MN SN __ZE SP __P:IB__ LP ]
0.5+ .
0 L v e “u
-8 -6 -4 -2 0 2 4 6 8
UNIVERSE OF DISCOURSE

FIGURE 2 Library of overlapping fuzzy-set values defined on a universe




of discourse.

We assign each system input to a fit vector of length 7, where the ith fit, or fuzzy unit
[Kosko, 1986], equals the value of the ith fuzzy set at the input value. In other words,
the ith fit measures the degree to which the input belongs to the ith fuzzy-set value. For
instance, we apply the input values 1, —4, and 3.8 to the seven fuzzy sets in the library to

obtain the fit vectors

1 — (0 0 0 .7 .7 0 0) ,
—4—-—-—)(0100000),

38 — (0 0 0 0 .1 1 0

We determine these fit values above by convolving a‘Dirac delta function centered at the

input value with each of the 7 fuzzy sets:

msp(3.8) = 6(y — 3.8) * msp(y) = .1 . (1)

If we use a discretized universe of discourse, then we use a Kronecker delta function in-
stead. Equivalently, for the discrete case n-dimensional universe of discourse X = {zi,...,
zn}, a control input corresponds to a bit (binary unit) vector B of length n. A single 1
element in the tth slot represents the “crisp” input value ;. Similarly, we represent the
kth library fuzzy set by an n-dimensional fit vector A; that contains samples of the fuzzy
set at the n discrete points within the universe of discourse X. The degree to which the
crisp input z; activates each fuzzy set equals the inner product B - A of the bit vector B
and the corresponding fit vector Ag.

We formulate control FAM rules by associating output fuzzy sets with input fuzzy sets.

The antecedent of each FAM rule conjoins ey, ¢x, and vi_; fuzzy-set values. For example,
IF ex. = MP AND ¢é. = SN AND w1 = ZL, THEN v, = SP.

We abbreviate this as (MP,SN,ZFE; S P).

-1




The scalar activation value w; of the ith FAM rule’s consequent equals the minimum
of the three antecedent conjuncts’ values. If alternatively we combine the antecedents
disjunctively with OR2, the activation degree of the consequent would equal the mazimum
of the three antecedent disjuncts’ values. In the following example, m4(ex) denotes the

degree to which eg belougs to the fuzzy set A:

LN MN SN ZE SP MP LP

ex. = 26 — (0 0 0o o0 1 4 0)

& = -2.0 — (0 0o 1 0o 0 0 0

Vo1 = 1.8 —~ (0 o0 0 a1 1 0 0

maypler) = A4 B
msni(ér) = 1
mze(te-1) = .1
w; = min(4, 1, .1) = 1
So the system activates the consequent fuzzy set SP to degree w; = .1.

The output fuzzy set’s shape depends on the FAM-rule encoding scheme used. With
correlation-minimum encoding, we clip the consequent fuzzy set L; in the library of fuzzy-
set values to degree w; with pointwise minimum:

mo,(y) = min(wi,m(y)) . (2)

With correlation-product encoding, we multiply L; by w;:

7”0.(?/) = w; ‘Nll,.(?/) ) ('3)

or equivalently,

O, = w; L, . (4)

Figure 3 illustrates how both inference procedures transform £, to scaled output O;. For




the exan:ple above, correlation-product inference gives output fuzzy set O; = .1SP,

where L; = SP denotes thie fuzzy set of small but positive angular velocity values.

/N
3/ \ N W

Consequent L ; Qutput O

ﬂ T\

s \

(b) l ‘l A}
W ] / \ . . 1, ‘\

Consequent L; Output O

FIGURE 3 FAM inference procedure depends on FAM rule encoding proce-

dure:  (a) correlation-minimum encoding, (b) correlation-product encoding.

The fuzzy system activates each FAM rule consequent set to a different degree. For the

ith FAM rule this yields the output fuzzy set O;. The system then sums the O; to form
the combined output fuzzy set O:

A’
0O = Zot ) (5)
=1
or equivalently,

N
mo(y) = 3 mo.(y) - (6)

The control output vy equals the fuzzy centroid of O:

/y mo(y)dy

/mo(y)dy ’ (

~J
S———

Uy

9




where the limits of integration correspond to the entire universe of discourse ¥ of angular
velocity values. Figure 4 shows an example of correlation-product inference for two FAM

rules followed by centroid defuzzification of the combined output fuzzy sct.

ZE
1 | /A
I e, = SP and e, = ZE and v, ., = ZE, : ) N
] 1
] t
t

thea v, = SP. |
ZE SP SN‘
1 '
1
i e = ZE and &, = SP and v, , = SN. /\—___—_——/Z;xﬂ-—_ K —__——A:——
then v, = ZC. 4 t :
' .« .
€y ék Vi1

Vk

FIGURE 4  Correlation-product inferences followed by centroid defuzzifi-
cation. FAM rule antecedents combined with AND use the minimum fit value

to activate consequents. Those combined with OR use the mazimum fit value.

To reduce computations, we can discretize the output universe of discourse Y to p values,

Y = {n,...,y,}, which gives the discrete fuzzy centroid

p
Z y Mo yJ

= (8)
Z 71?0 1/]

Ve =

Fuzzy Centroid Computation

We now develop two discrete methods for computing the fuzzy centroid (7). Theorem
I states that we can compute the global centroid vy from local FAM-rule centroids. The-

orem 2 states that vp can be computed from only 7 sample points if all the fuzzy sets

10




are symmetric and unimodal (in the broad sense of a trapezoid peak), though otherwise

arbitrary. Both results reduce computation and favor digital implementation.

Theorem 1:  If correlation-product inference determines the output fuzzy sets, then we

can compute the global centroid vx from local FAM-rule centroids:

N
Y wil;
=1

N
ZIU,'I,'
=1

Proof. The consequent fuzzy set of each FAM rule cquals one of the fuzzy-set values

(9)

shown in Figure 2. We assume each fuzzy set includes at least onc unity value, mu(z) = 1.

Define I; and c; as the respective area and centroid of the ith FAM rule’s consequent set

L,’:
I, = /m[a‘(y)dy ) (10)

/ymmw®

G =
/mL.‘(y)dy
[ v mu@dy
= 7 ,
substituting from (10). Hence
/ym[,_(y)dy = ¢ I; . (11)

Using (3), the result of correlation-product inference, we get

/y mo (y)dy = /yw,— my, (y)dy

11




= w; / y my, (y)dy

= w,c,—[.- N (]2)
substituting from (11). Similarly,

/ mo,(y) dy = / w; my,(y)dy

= w,-[; ) (13)

substituting from (10).

We can use (12) and (13) to derive a discrete expression equivalent to (7):

N :
/ymo(y)dy = /y[Zmo‘(y)]dy substituting from (6) ,

=1

i

> [ vmoy) dy
= Y wl; , (14)
from (12). Similarly,

/ mo(y)dy = / émo.(y)dy

]

> / mo, (y)dy
= > wli (15)

from (13). Substituting (14) and (15) into (7), we derive a new form for the centroid:




N
Zw.'CJi
=1

N
Zw,-l,-
=1

which is equivalent to (9). Each summand in cach summation of (16) depends on only

) (16)

Uk

a single FAM rule. So we can compute the global output centroid from local FAM-rule

centroids. Q.E.D.

Theorem 2:  If the 7 library fuzzy sets are symmetric and unimodal (in the trapezoidal
sense) and we use correlation-product inference, then we can compute the centroid vy from

only 7 samples of the combined output fuzzy set O:

7
> mo(y5) ¥; J;
UV = le? . (17)

> - mo(y;) J;

—1

The 7 sample points are the centroids of the output fuzzy-set values.

Proof. Define O; as a fit vector of length 7, where the fit value corresponding to
the ith consequent set has the value w;, and the other entries equal zero. If all the fuzzy
sets are symmetric and unimodal, then the jth fit value of O; is a sample of mg, at the

centroid of the jth fuzzy set. The combined output fit vector is
O = >0 . (18)
=1

Since

N
mo(y) = Z:mo.(y) ,

the jth fit value of O is a sample of mg at the centroid of the jth fuzzy set. Equivalently,

the jth fit value of O cquals the sum of the output activations w; from the FAM rules with

13



consequent fuzzy sets equal to the jth library fuzzy-set value.
Define the reduced universe of discourse as Y = {y,...,¥y7} such that y; equals the

centroid of the jih output fuzzy set. In vector form

Y = (y,...,y7)

= (-6, —4, -2, 0, 2, 4, 6)
for the library of fuzzy sets in Figure 2. Also define the diagonal matrix
J = diag(y,...,J7) , (19)

where J; denotes the area of the jth fuzzy-set value. If the :th FAM rule’s consequent fuzzy
set equals the jth fuzzy-set value, then the jth fit value of O increases by w;, ¢; = Yi
and I; = J;. So

7 N
OJYT = Zmo(yj)y,-Jj = Zw,-c.-],- . (20)
1=1 i=1
Also,
~ 7 N
OJIT = Zmo(yj).]j = Zw;l; , (21)
=1 i=1

where 1 = (1,...,1). Substituting (20) and (21) into (16) gives

27:"10(31:') ;i J;
= = (22)

U

7
Y mo(y;) J;
1=1

which is equivalent to (17). Therefore, (22) gives a simpler, but equivalent form of the
centroid (7) if all the fuzzy sets are symmetric and unimodal, and if we use correlation-
product inference to form the output fuzzy sets O;. Q.E.D.

Consider a fuzzy controller with the fuzzy scts defined in Figure 2, and 7 FAM rules

with the following outputs:




: w; Consequent

1 0.0 MP
2 0.2 SP
3 1.0 ZE
4 04 SN
5 0.1 Sp
6 038 ZE
7 0.6 SN

Figure 5 shows the combined output fuzzy set O, with the SN, ZE, and SP components
displayed with dottcd lines. Using (7) we get a velocity output of —0.452. Alternatively,
the combined output fit vector O equals (0, 0, 1.0, 1.8, 0.3, 0, 0). From (22) we get

—-2x1 4+ 0x18 4+ 2x03
= = —.452
Vk 1+ 18 + 03 0

15




13

ost

......

- -3 -2 -1 o 1 2 3 4

UNIVERSE OF DISCOURSE

FIGURE 5 Output fuzzy set O.

Fuzzy Controller Implementation

A FAM bank or “rulebase” of FAM rules defines the fuzzy controller. Each FAM rule
associates one consequent fuzzy set with three antecedent fuzzy-set conjuncts.

Suppose the ith FAM rule is (MP,SN,ZE; SP). Suppose the inputs at time k are

er =26, ¢ = —2.0, and vg_; = 1.8. Then
w = min(mMp(ek), m5N(c'L.), m.ZE(vk_l))
= min(.4, 1, .1)
= .1 .

If all the fuzzy sets have the same shape, then they correspond to shifted versions of a

16




single fuzzy set ZE:
msr(!/) = mzc(y - 2)

Define €, €', and v* as the centroids of the corresponding antecedent fuzzy sets in the

example above. So €' =4, ¢' = —2, and v* = 0. Then the output activation equals

w; = min(mze(er — '), mzg(ér — ¢'), mzp(vimy — v'))
= min(mzg(—1.4), mzg(0), mzg(1.8))
= min(.4, 1, .1)
= 1,

as computed above. Figure 6 schematizes such a FAM rule when presented with crisp

inputs.

v . ——— e E— . G e e e A At — - - —— mm e e v = = = - —— e — . —

<P
%“.
3
8
e mc el

o

Wi Correlation-Product
Inference

K
%;
3

N
1
:
1

<—

<
e
|

:
3

N

M
—

o

FIGURE 6  Algorithmic structure of a FAM rule for the special case of

identically-shaped fuzzy sets and correlation-product inference.
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The output fuzzy set O; in Figure 6 equals the fuzzy set ZE scaled by w; and shifted

by ¢:
mo,(y) = wmze(y — ) . (23)
Figure 7 illustrates O;.
moi(y)
w. -
i
1 y
C

FIGURE 7  Trapezoidal output fuzzy set O;.

The fuzzy control system activates a bank of FAM rules operated in parallel, as shown
in Figure 8. The system sums the output fuzzy sets to form the total output set O, which

the system converts to a “defuzzified” scalar output by computing its fuzzy centroid.

18
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FIGURE 8 Fuzzy control system as a parallel FAM bank with centroidal
output.

KALMAN FILTER CONTROLLER

We designed a one-dimensional Kalman filter to act as an alternative controller. The

state and measurement equations take the general form

Tipr = Prpx T + Tipinwe + Wigp we

2 = I{k T + Vk , (24)

where Vi denotes Gaussian white noise with covariance matrix Ri. If Vi is colored noise
or if % = 0, then the filtering-error covariance matrix Py becomes singular. The state z;

and the measurements z; are jointly Gaussian. Mendel [1987] gives details of this model.
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Assime the following one-dimensional model:

(Dk-}-l,k = l‘k+l.k = \I’L-+|_k = lh =1 fOl‘ all k,

e

U = e + ép . (20)

Let zx4, denote the output velocity required at time k to exactly lock onto the target at

time k+1. So the controller output at time & equals the “predictive” estimate Zgy1x = v

Note that
€k = Tk — Tilk—
= Tipk-1
€k = € — er_1

Substituting (25) into (24), we get the new state equation
Thyr = Zp + e + e + wi (26)

where w; denotes white noise that models target acceleration or other unmodeled effects.

The new measurement equation is

ze = o + Vi
= Tgpor + Tapor + Wk (27)

- '
= gy + Voo
Since we assume Ty and Vi are uncorrelated, the variance of V/ is

R, = E[V?

= Bl + BV (28)
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= Pk|k~l + R
The general form of the recursive Kalman filter equations is

Trpe = Tap-r + Kl — e Epny]

Ky = Py HIH P I + R
Tipie = Prirk Tape + Ve ur (29)
P = ®pp P o7 r r{

klk—1 kk-1 ko1 Py + Dok Qra iy

Py = [I — Killi]Pu—y

where Qr = Var(wy) = Elwiw]]. Substituting (25), (27), (28) and the definilion of vk

into (29), we get the following onc-dimensional Kalman filter:

Ee = v + GV
P
I =
k
v = Zip + e + & (30)

Pikr = Peoqjmr + Q-
P = [1 ~ Ki] P
Unlike the fuzzy controller, this Kalman filter does not automatically restrict the output
vr to a usable range. We must apply a threshold immediately after the controller. To
remain consistent with the fuzzy controller, we set the following thresholds:
] < 9 degrees azimuth |

o] < 4.5 degrees elevacion.




Fuzzy and Kalman Filter Control Surfaces

Ilach control system maps inputs to outputs. Geometrically, these input-output trans-
formations define control surfaces. The control surfaces are sheets in the input space
(since the output velocity vy is a scalar). Three inputs and one output give rise to a
four-dimensional control surface, which we cannot plot. Instead, for cach controller we can
plot a family of three-dimensional control surfaces indexed by constant values of the fourth
variable, the error eg, say. Then cach control surface corresponds to a different value of
the error ey.

The fuzzy control surface characterizes the fuzzy system’s fuzzy-set value definitions
and its bank of FAM rules. Diflerent sets of FAM rules yield different fuzzy controllers,
and hence different control surfaces. Figure 9 shows a‘cross section of the FAM b:mk when
er = ZE. Each entry in this linguistic matrix represents one FAM rule with e, = ZF

as the first antecedent term.

V-1

LN MN SN ZE sp MP LP

LN LN LN LN LN MN SN ZE

MN LN LN LN MN SN ZE SP

SN LN LN MN SN ZE SP mMpP

sP | mn ] sn jzelse | mP| P | e

mp SN ZE SP MP LP LP LP

Le ZE SP MP LP LP LP LP

FIGURE 9 ¢ = 71 crossscction of the fuzzy control system’s FAM bank.

Each entry represents one FAM rule with ex = Z I as the first antecedent term.




The shaded FAM rule is “IF ex. = ZFE AND ¢, = SP AND v._; = SN,
THEN vy, = ZE,” abbreviated as (ZF£,SP,SN; ZE). Note the ordinal anti-
symmetry of this FAM-bank matrix. The six other cross-section IFAM-bank
matrices arc similar. We can climinate many FAM rulc entries without greatly

perturbing the fuzzy controller’s behavior.

The entire FAM bank—including cross sections for e, equal to cach of the seven fuzzy-
sct values LN, MN, SN, ZE, SP, MP, and LP—determines how the system maps input
fuzzy sets to output fuzzy sets. The fuzzy set membership functions shown in Figure 2
determine the degree to which each crisp input value belongs to cach fuzzy-set value. So
both the fuzzy-set value definitions and the FAM bank determine the defuzzified output
vi for any set of crisp input values ¢y, ¢, and vg_,. » _

Figure 10 shows the control surface of the fuzzy controller for e, = 0. We plotted the
control output v against éx and vi_;. Since we use the same algorithm for tracking in

azimuth and elevation, the control surfaces for the two dimensions differ in scale only by

a factor ol two.

FIGURE 10  Control surface of the fuzzy controller for constant error
cr = 0. We plotted the eontrol output v, against ¢, and ve_; along the

respective west and south borders.

The Kalman filter has a random control surface that depends on a time-varving pa-




rameter. From (30) we sce that

vk = Ik + ook + oGk,

- rd ?
T = vk + KV,

where V/ denotes white noise with variance given by (28). Combining these two equations

gives the equation for the random control surface:
ve = vr_y ‘e e + 1\’L~Vk’ . (31)

At time k the noise term K V) has variance

o} = K!R, (32)
_ P’?l'f—l bstituting 30
— T—uponsusnumg rom (30) ,
k
Pl

]

Py + %

substituting from (28). Combining (31) and (32) gives a new control surface equation:
v = vk +oer + & + oV (33)

where V/ denotes unit-variance Gaussian noise. So the Kalman filter’s control output
equals the sum of the three input variables plus additive Gaussian noise with time-dependent
variance af. For constant error o, we can interpret (33) as a smooth control surface in 12°

defined by

et meq e b o




and perturbed at time & by Gaussian noise with variance of.

In our simulations the standard deviation o converged after only a few iterations. We
used unity initial conditions: P, = R = 1 for all k.

Table 1 lisis the convergence rates and stecady-state values of o4 for three differen-
t values of the variance Var(w) of the white-noise, unmodeled-effects process wi. For
Var(w) = 0, o4 decreases rapidly at first—og = .10, 037 = .05—Dbut does not attain

its stcady-statc value of zero within 100 iterations.

Var(w) | Steady-state | Number of iterations

value of o4 | required for convergence

1.00 0.79 2
0.25 0.46 4
0.05 0.22 9

TABLE 1  Convergence rates and steady-state values of o} for different val-

ues f the variance Var(w) of the white-noise, unmodeled-effects process wy.

Figure 11 shows four realizations of the Kalman filter’s random control surface for
cr = 0, cach at a time k when o has converged to its steady-state value. For each plot, we
used output thresholds and initial variances for the azimuth case: v < 9.0, It = Py,
= 1.0. As with the fuzzy controller, elevation control surfaces equal scaled versions of the

corresponding azimuth control surfaces.




FIGURE 11  Realizations of the Kalman filter’s random control surface
with ex = 0 for different values of the variance Var(w) and steady-state values
of the standard deviation oy: (a) Var(w) = o =0, (b) Var(w) = .05,

or = .22; (c) Var(w) = .25, 0, = .46; (d) Var(w) = 1.0, 0, = .79.

SIMULATION RESULTS

Our target-tracking sumulations model several realworld scenarios. Suppose we have

mounted the target tracking system on the side of a vehicle, aircraft, or ship. The system
tracks a missile that cuts across the detection range on a straight flight path. The target

maintains a constant speed of 1,870 miles-per-hour and comes within 3.5 miles of the
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platform at closest approach. The platform can scan from 0 to 180 degrees in azimuth at
a maximum rate of 36 degrees-per-second, and from 0 (vertical) to 90 degrees in elevation
at a maximum rate of 18 degrees-per-second. The sampling interval is 1/4 of a second.
The gain of the fuzzy controller equals 0.9. So the maximum error considered is 10 degrees
azimuth and 5 degrees elevation. We threshold all error values above this level.

I'igure 12 demonstrates the best performance of the fuzzy controller for a simulated
scenario. The solid lines indicate target position. The dotted lines indicate platform
position. To achieve this performance, we calibrated the three design parameters—upper
and lower trapezoid bases and the gain. Figures 13 and 14 show examples of uncalibrated
systems. Too much overlap causes excessive overshoot. Too little overlap causes lead or
lag for several consecutive time intervals. A gain of 0.9 suffices for most scenarios. We
can fine-tune the fuzzy control system by altering the\ percentage overlap betweermr adjacent
fuzzy sets.

Figure 15 demonstrates the best performance of the Kalman-filter controller for the
same scenario used to test the fuzzy controller. For simplicity, Ry = Py for all values of
k. For this study we chose the values 1.0 (unit variance) for azimuth and 0.25 for eleva-
tion. This 1/4 ratio reflects the difference in scanning range. We set @y to 0 for optimal
performance. Figure 16 shows the Kalman-filter controller’s performance when Q; = 1.0

azimuth, 0.25 elevation.

Sensitivity Analysis

We compared the uncertainty sensitivity of the fuzzy and Kalman-filter control systems.
Under normal operating conditions. when the FAM bank contains all fuzzy control rules,
and when the unmodeled-effects noise variance Var(w) is small, the controllers perform
almost identically. Under more uncertain conditions their performance differs. The Kalman
filter’s state equation (26) contarns the noise term wy whose variance we must assume.

When Var(w) increases, the state equation becomes more uncertain. The fuzzy control

[e>
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FAM rules depend implicitly on this same equation, but without the noise term. Instead,
the fuzziness of the FAM rules accounts for the system uncertainty. This suggests that we
can increase the uncertainty of the implicit state equation by omitting randomly selected
FAM rules. Figures 17 and 18 show the effect on the root-mean-squared error (RMSE) in
degrees when we omit FAM rules and increase Var(w). Each data point averages ten runs.

The controllers behave diflerently as uncertainty increases. The RMSE of the fuzzy
controller increases little until we omit nearly sixty percent of the FAM rules. The RMSE
of the Kalman filter increases steeply for small values of Var(w), then gradually levels off.

We also tested the fuzzy controller’s robustness by “sabotaging” the most vulnerable
FAM rule. This could reflect lack of accurate expertise, or a highly unstructured problem.
Changing the consequent of the stcady-state FAM rule (ZE,ZE,ZE; ZE) to LP gives the

following nonsensical FAM rule:

IF the platform points directly at the target
AND both the target and the platform are stationary,

THEN turn in the positive direction with maximum velocity.

Figure 19 shows the fuzzy system’s performance when this sabotage FAM rule replaces
the steady-state FAM rule. When the sabotage FAM rule activates, the system quickly

adjusts to decrease the error again. The fuzzy system is piecewise stable.
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FIGURE 12  Best performance of the fuzzy controller: (a) azimuth position

and error, (b) elevation position and error. Fuzzy sct overlap is 26.2%.
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FIGURE 14  Uncalibrated fuzzy controller: (a) azimuth position and error,

(b) elevation position and error. Fuzzy set overlap equals 12.5%. Too little

overlap causes lead or lag for several consecutive time intervals.
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Adaptive FAM (AFAM)

We used unsupervised product-space clustering [Kosko, 1990a] to train an adaptive
FAM (AFAM) fuzzy controller. Differential competitive learning (DCL) adaptively clus-
tered input-output pairs. The Appendix describes product-space clustering with DCL. For
this study, there were four input ncurons in Fz. A manually-designed FAM bank and 80
random target trajectories generated 19,236 training vectors. Each product-space training
vector (e, €k, vk_1, vx) defined a point in 121,

Symmetry allowed us to reflect about the origin all sample vectors with negative errors
er. We then trained 3,000 synaptic quantization vectors (p = 3,000) in the positive error
half-space. For cach sample vector, we defined the 10 closest synaptic vectors as “winners”
(N = 10). The matrix W of Fy within-field synaptic connection strengths had diagonal
elements wy; = 2.9, off-diagonal elements w;; = —0.1. After training, we reflected the
3,000 synaptic quantization vectors about the origin to give 6,000 trained synaptic vectors.

The product-space FAM cells uniformly partitioned the four-dimensional product
space. Each FAM cell represented a single FAM rule. The four fuzzy variables could assume
only the 7 fuzzy-set values LN, MN, SN, ZE, SP, MP, and LP. So the product space
contained 7 = 2401 FAM cells.

At the end of the DCL training period, we defined a FAM cell as occupied only if it
contained at least one synaptic vector. For some combinations of antecedent fuzzy sets,
synaptic vectors occupicd more than one FAM cell with different consequent fuzzy sets. In
these cases we computed the centroid of the consequent fuzzy sets weighted by the number
of synaptic vectors in their FAM cells. We chose the consequent fuzzy set as that output
fuzzy-set, value with centroid necarest the weighted centroid value. We ignored other FAM
rules with the same antecedents but different consequent fuzzy sets.

Figure 20(a) shows the ¢ = ZF cross section of the original FAM bank used to
generate the training samples. Figure 20(b) shows the same cross section of the DCL-

estimated FAM bank. Figure 21 shows the original and DCl-estimated control surfaces

for constant error e = 0.
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for constant error ¢;, = 0.

The regions where the two control surfaces differ correspond to infrequent high-velocity
situations. So the original and DCl.-estimated control surfaces yield similar results. Table

2 compares the controllers’ root-mean-squared errors for 10 randomly-selected target tra-

jectorics.
Vi Vit
LN MN SN ZE SP Mpr LP LN MN SN ZE SP MP Lp
LN !r MN| SN | ZE LN r MN| sN | zE
MNI MN| SN | zE | sp MN SN | ZE | sp
I _ —
SN MN| SN | zE | sp | mp SN MN| sN | zE [ TP | mp
e, £ MN| SN | ZE | sP | MP e, ZE|MN| my|sN [ ze|se | Mp| mp
sP | MN| SN | ZE | sP | MP sp | MN| SN | ZE | sp | Mp
MP| SN | ZE | SP | MP Mp| SN | ZE | sp
Lp | ZE | sp | Mp Lp | ZE{ sp | mp
(a) (b)

FIGURE 20  Cross sections of the original and DCL- estimated FAM banks
when e = ZI5:  (a) original, (b) DCL- cstimated.
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FIGURE 21 Control surfaces for constant error ex = 0: (a) original,
(b) DCL-estimated.
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Trajectory Azimuth Elevation

Number  Original Estimated  Original Estimated

1 2.33 2.33 3.31 3.37
2 4.14 4.14 3.03 2.89
3 6.11 6.11 3.69 3.68
4 3.83 3.83 3.32 3.30
5 4.02 4.02 3.11 3.10
6 2.84 2.84 1.20 1.21
7 3.22 3.22 3.04 2.98
8 0.75 0.74 2.00 2.00
9 9.28 9.27 5.50 5.41 _
10 1.81 1.81 2.29 2.29
Average 3.83 3.83 3.05 3.02

TABLE 2  Root-mean-cquared errors for 10 randomly-selected target tra-
jectories. The original and DCL-estimated FAM banks yielded similar results
since they differed only in regions corresponding to infrequent high-velocity

situations.

Conclusion

We developed and compared a fuzzy control system and a Kalman-filter control system
for realtime target tracking. The fuzzy system represented uncertainty with continuous or
fuzzy sets, with the partial occurence of multiple alternatives. The Kalman-filter system
represented uncertainty with the random occurence of an exact alternative. Accordingly,
our simulations tested cach system’s response to a different family of uncertainty envi-
ronments, one fuzzy and the other random. In general representative training data can

“blindly” generate the governing FAM rules.
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These simulations suggest that in many cases fuzzy controllers may be a robust, com-
putationally eflective alternative to linear Kalman filter, indeed to nonlinear extended
Kalman filter, approachies to realtime system control—even when we can accurately artic-

ulate an input-output math model.
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Appendix: Product-space Clustering with
Differential Competitive Learning

Adaptive Vector Quantization

Product-space clustering [Kosko, 1990a] is a form of stochastic adaptive vector quanti-
zation. Adaptive vector quantization (AVQ) systems adaptively quantize pattern clusters
in R™. Stochastic competitive-learning systems are neural AVQ systems. Neurons com-
pete for the activation induced by randomly sampled patterns. The corresponding fan-in
vectors adaptively quantize the pattern space R*. The p synaptic vectors m; define the
p columns of the synaptic connection matrix M. M interconnects the n input or linear
neurons in the input neuronal field Fx to the p competing nonlinear neurons in the output
field Fy. Figure 22 below illustrates the neural network topology.

Learning algorithms estimate the unknown probability density function p\x), which
describes the distribution of patterns in R*. More synaptic vectors arrive at more probable
regions. Where sample vectors x are dense or sparse, synaptic vectors m; should be dense
or sparse. The local count of synaptic vectors then gives a nonparametric estimate of the

volume density (V) for volume V. C R™

pv) = /\ p(x)dx (34)

Numberof m; € V

p
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In the extreme case that V. = R", this approximation gives P(V) = p/p = 1. For

improbable subscts V, P(V) = 0/p = 0.

Stochastic Competitive Learning Algorithms

The metaphor of competing neurons reduces to nearest-neighbor classification. The
AVQ system compares the current vector random sample x(t) in Euclidean distance to the
p columns of the synaptic connection matrix M, to the p synaptic vectors my(t), ..., m,(t).
If the jth synaptic vector m;(t) is closest to x(t), then the jth output ncuron “wins” the
competition for activation at time {. In practice we sometimes define the nearest N synaptic
vectors as winners. Some scaled form of x(t) — mj(t) updates the nearest or “winning”
synaptic vectors. “Losers” remain unchanged: m;(t+1) = m(t). Competitive synaptic
vectors converge to pattern-class centroids exponentially fast [Kosko, 1990b).

The following three-step process describes the competitive AVQ algorithm, where the

third step depends on which learning algorithm updates the winning synaptic vectors.

Competitive AVQ Algorithm

1. Initialize synaptic vectors m,(0) = x(z),7 = 1,..., p. Sample-dependent initial-

ization avoids many pathologics that can distort nearest-neighbor learning.

(S

For random sample x(t), find the closest or “winning” synaptic vector m;(1):

[fmy(¢) — x()|| = mlinHln,-(t) — x(Hl} (36)

where ||x||? = 2 + ... + 7! defines the squared Euclidean vector norm of x. We

can define the N synaptic vectors closest to x as “winners.”




3. Update the winning synaptic vector(s) m;(¢) with an appropriate learning algorithm.

Differential Competitive Learning (DCL)

Differential competitive “synapses” learn only if the competing “ncuron” changes its

competitive status {[{osko, 1990¢]:

iy o= Si(y)[Si(z) — myl (37)
or In veclor notation,

m; = S(y;)[S(x) — my] , (38)
where §(x) = (Si(z1),...,Se(z4)) and m; = (myj,...,ma;). m;; denotes the synaptic

value between the zth ncuron in input field Fy and the jth neuron in competitive field
Fy. Nonnegative signal functions S; and S; transduvce the real-valued activations z; and
y; into bounded monotone nondecreasing signals Si(z;) and Sj(y;). r;; and Si(y;) denote
the time derivatives of m;; and S;(y;), synaptic and signal velocities. S;(y;) measures the
competitive status of the jth competing neuron in Fy. Usually S; approximates a binary

threshold function. For example, S; may equal a steep binary logistic sigmoid,

1

1 +e ¥ (39)

Si(y;)
for some constant ¢ > 0. The jth neuron wins the laterally inhibitive competition if
S, =1, loses if §; = 0.

For discrete impleimentation, we use the DCL algorithm as a stochastic difference

equation [Kong, 1991]:

m;(t+1) = m(t) + o AS;(y;(I))S(x(1)) — my(#)] if the jth neuron wins, (40)
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m;(t +1) = m(t) if the tth neuron loses. (41)

AS;(y;(t)) denotes the time change of the jth neuron’s competition signal S;(y;) in the

competition layer [y:

ASi(yi(t)) = sgn[Si(y;(t+1)) — Si(y;(1)] - (42)

We define the signum operator sgn(z) as

1 if £ >0
sgn(z) = 0 if z =0 . (43)
-1 i z <0
{c:} denotes a slowly decreasing sequence of learning coefficients, such as ¢, = .1(1 —

t/2000) for 2000 training samples. Stochastic approximation [Huber, 1981} requires a de-
creasing gain sequence {c;} to suppress random disturbances and to guarantee convergence
to local minima of mean-squared performance measures. The learning coefficients should

decrease slowly,

ict = oo , (44)

but not too slowly,

-
It
—

Narmonic-series coellicients, ¢, = 1/¢, satisfly thesc constraints.

We approximate the competitive signal difference AS; as the activation difference Ay;:

AS;(y;(t) = sgnly;(t+1) — y;()] (16)

= Ay(l) - (17)

44




input neurons in feedforward networks usually behave linearly: S;(z;) = z;, or S(x(t)) = x(¢).

Then - ¢ update the winning synaptic vector m;(t) with

m;(t+1) = my(t) + o Ay;(t)[x(t) — my(t)] . (48)

We update the £y neuronal activations y; with the additive model

B4 = B0 + X SEOm0) + X Sy - (@9)

Ior lincar signal functions S, the first sum in (49) reduces to an inner product of sample

and synaptic vectors:

Xn:a:,-(t)m;j(t) = xT(t)my(t) . - (50)
Then positive learning tends to occur—Am;; > 0—when x is close to the jth synaptic
vector my.
Since a binary threshold function approximates the output signal function Si(yx), the
second sum in (49) sums over just the winning neurons: Z wy; for all winning neurons y; .
The p x p matrix W contains the Fy within-field syknaptic connection strengths. Di-
agonal elements w;; are positive, off-diagonal elements negative. Winning neurons excite
themselves and inhibit all other neurons. Figure 22 shows the connection topology of the

laterally inhibitive DCL network.




Input field FX Competition ficld FY

FIGURE 22  Topology of the laterally inhibitive DCL network.
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Abstract

The probabilistic foundations of competitive learning systems are developed.  Continuouns and discrete for-
mulations of unsupervised, supervised, and differential competitive learning systems are studied. Thee systens
estimate an unknown probability density function from random pattern samples and behave as adaptive vector
quantizers. Synaptic vectors, in feedforward competitive ncural networks, quantize the pattern space and converge
to pattern class centroids or local probability maxima. The stochastic calculus and a Lyapunov argument prove
that competitive synaptic vectors converge to centroids exponentially quickly. Convergence does not depend on a

specific dynamical model of how neuronal activations change.

Feedforward Multilayer Competitive Learning Systems

Competitive learning systems arc usually feedforward multilayer neural networks. Neurons compete
for the activation induced by randomly sampled pattern vectors x ¢ 2”. An unknown probability density
function p(x) characterizes the continuous distribution of random pattern vectors x. A random n-vector
m; of synaptic values fans-in to each competing neuron. The synaptic vector myj is the jth column of the
synaptic connection matrix M.

Competition selects which synaptic vector m; is modified by the training sample x. In practice
competition is a metaphor for metrical pattern matching. Neuronal activation dynamics are seldom used.
The jth neuron “wins” at an iteration if the synaptic vector m; is the closest, in Euclidean distance, of
the m synaptic vectors to the random pattern x sampled at that iteration.

Some scaled form of the difference vector x — m; additively modifies the closest synaptic vector
m;. Different scaling factors determine different competitive learning systems. A positive scaling factor
“rewards” the winning jth neuron by making the modified synaptic vector m; resemble the random sample
x at least as much as did the unmodified synaptic vector m;. A negative scaling factor “pumishes” the jth
neuron by making the modified synaptic vector m; disresemble x more than did the unmodified synaptic
vector. Geometrically, negative scaling tends to move misclassifying synaptic vectors in R" out of regions
of misclassification.

Competitive learning systems can be viewed as non-neural signal processing algonthms.  As in a
correlation detection systeis, random inputs are mietrically compared with the columns of the matrnx Af.
Pattern recognition (signal detection) is nearest-neighbor template matching. During training -and the
system may always be training — at most one column of Af is modified at a time. This hightens computation
and favors digital immplementation.

Auloassociative'! competitive learning systems have two layers or fields of neurons. The input data
ficld Fx of n neurons passes a randomly sampled pattern vector x forward through an n-by-m matrix A/
of synaptic values to m “competing” nenrons in the competitive field Fy . A symumetrie m-by-m matrix
1V of within-field synaptic values describes the competition in Fy-. W has a positive main diagonal (or
diagonal band) with negative or zero values elsewhere. In practice 4 has s down its main diagonal and
—1s elsewhere. Autoassociative competitive learning systems recogmize patterns. More generally, they
estimate probability density functions p(x).

Heteroassociative’ competitive learning systems have theee fields of newrons. The first and third fields
are input and output data fields for sampling the random vector association (x,z). The second or “hidden”
field contains the competing neurons. The first and third fields can be concatenated mto a single field of




n + p neurons. Ce vpetitive learning procecds as in the autoassociative case. Closest matches modify the
columns of the ' .ween-ficld matrices Af and N of synaptic values with the same difference-based learning
law.

In practice heteroassociative competitive learning systems do not directly estimate an unknown joint
probability density function p(x,z). Instead they esiimate a sampled continuous function f : R® — RP
from a large number of noisy random vector samples (x;, z;). Implicitly the functional pair (x;, f(x;))
belongs to a high-probability region of 2™ x RP. These heteroassociative systems can be directly compared
with multilayer ncural networks trained with the backpropagation algorithm and with the same training
data. The competitive systems tend to learn faster, but less accurately, at least for small dimensions n
and p.

Feedback autoassociative and heteroassociative competitive learning systems, such as random adaptive
bidirectional associative memories!®, have more complicated dynamics. These stochastic systems are glob-
ally stable if within-field competition is symmetric and between-field synaptic values are symmetrizable.
Our discussion focuses more on encoding than on decoding properties of competitive learning sy-tems.
So the discussion is limited to feedforward autoassociative competitive learning systems for estimating
unknown probability density functions p(x). Heteroassociative extensions are immediate.

Competitive Learning as Adaptive Vector Quantization

Competitive learning systems adaptively quantize the pattern space f". The synaptic vector m;
represents, or “rounds off,” the local region about m;. Each syu.ptic vector m; is a quantization vector.
The competitive learning system learns as synaptic vectors m; change in response to randomly sampled
training data. Geometrically, learning occurs if and only if the synaptic vectors m; move in the pattern
space R™.

Competitive learning adaptively distributes the m synaptic vectors m,, ..., m,, in R” to approximate
the unknown probability density function p(x) of the random pattern vector x. The patterns x are
continuously distributed in R™. p(x) describes their distritbution. Where the patterns x are dense or
sparse, the synaptic vectors m; tend to be dense or sparse. Different competitive learning, or adaptive
vector quantization (AVQ), schemes distribute the synaptic vectors in different ways.

If p(x) were known, learning would be unnecessary. Numerical techniques®?2 could directly determine
pattern clusters or classes, centroids, and class boundaries.

All observed patterns are realizations of a single random vector x. The random vector x can be
interpreted as n ordered scalar random variables: x = (zy,...,za). This is heuristic but incomplete.

A random vector x is a function. It is a measurable function from a sample space to a vector space.
(‘This means'? inverse images x~'(O) of measurable or open subsets O of the vector space are measurable
subscts of the sample space.) In the autoassociative case both spaces are R",s0 x : " — R". The sigma
algebra of measurable sets is the Borel! sigma algebra B(R"™), the topological sigma algebra generated!?
from the open subsets of ™. In practice the random vector x : R™ — " is just the identity function:
x(v) = v forall vin R

The cumulative distribution function P . B(R™) — [0, 1] maps open subsets of £ to numbers in
{0, 1] and is countably additive on countably-infinite disjoint unions of subsets of 7. p(x) characterizes
the “randomness” of the random vector x. I’(O) is the integral of p(x) on the open set O C R™. Since x 18
the identity function on K™, p(x) characterizes the occurrence probability of the observed pattern samples
or realizations used in training or recognition.

The stochastic pattern recognition framework is rigorously defined by specifying the probability space
(1", B(R™), P)and the pattern random-vector function x. In the default case x is the identity function.

Pattern clusters or classes are subsets of ™. Some pattern classes are mote probable than others. 'The
pattern space [ s partitioned into k subsets or dectston classes Dy, ..., Dy

to




R = Dyu.. Ul and D;0D; = @0 i#£5 . (1

The distinction between supervised and unsupervised pattern learning and recognition depends on
the aviulable information. In both cases the probability density function p(x) i1s unknown. That is why
adaptive techniques are used instead of, say, numerical optimization or calculus-of-variation® techuiques.

Supervised learning requires more information than unsupervised learning. Unsupervised learning uscs
minimal information. Pattern learning is supervised if the decision classes Dy, ..., Dy are known and the
learning, system uses this information. The user knows—and the algorithm uses—the class membership
of every sample pattern x. The user knows that x ¢ [); and that x £ D; for all 7 # 1. Learning is
unsupervised if class memberships are unknown. Supervised learning systems allow an error measure or
vector to be computed. The simplest error measure is the desired outcome minus the actual outcome. The
error measure guides the learning process with feedback error correction.

AVQ Class Probability Estimation

‘The partition property (1) tmplies that p(D;)+.. .+p{De) = 1since p(R™) = 1. The class probability
#(1)) s given by

(D) = // p(x) dx (2)

= Ellp] (3

where the integral in (2) is an n-dimensional multiple integral. E[z] is the expectation of random variable
z. The function Is : R™ — {0, 1} is the indicator function of set S. Is(x) = 1 if x ¢ S, Is(x) = O if
x ¢ S. In the probabilistic setting the indicator function Is is random (Borel measurable!), and hence a
random variable.

A pattern x is in exactly one decision class—with probability one. With probability zero, pattern x
can be on the border of two or more decision classes. p(x) = 0 for every x in R".

A uniform partition gives p(D;) = 1/k for each decision class D; in the partition. Uniform partitions
are clearly not unique. Some vector quantization schemes attempt to adaptively partition R™ into a
uniform partition. Then 1t should be equally likely that a pattern sample x drawn at random (according
to p(x)) from R" was drawn from any one of the & decision classes D;. This corresponds to each competing
neuron “winning” with the same frequency. Competitive learning has been modified? 2% in several, usually
stipervised, ways to force the competing n-urons to have the same win rate. The motivation for such
modifications i1s economy: fewer ncurons are needed to estimate a sampled continuous function.

Nonuniform partitions are more informative than uniform partitions. They also occur more frequently
when estimating an unknown probability density function p(x). When the number of competing neurons
15 less than the number of distinet pattern classes, when m <k, some neurons win more frequently than
others. IE p(1)) > p(1)}), the competing neuron that codes for 1, tends to win more frequently than the
nenron that codes for D). Equivalently, more sample patterns x tend to be closer in Euclidean distance
to the corresponding synaptic vector, call it my, that quantizes I); than to the synaptic vector m, that
quantizes Di . Below we show that my and myj tend to arrive at the respective centroids of D; and 1),
Centroids minimize the mean-squared error of vector quantization!®,

In general there are more competing neurons than decision classes, m > k. For neurons can always
be added to the competitive learning system. Then if p(1;) > p(D;), there tend to be more synaptic
vectors within 1)y than within ;. In prinaiple all the neurons corresponding to the synaptic vectors in
D, can have the same win rates. But since metrical ~lassification is used to decide which neuron wins,
neitrons with synaptic vectors nearer the centroid of 1, tend to win more frequently.




The number of synaptic vectors in decision class 1) gives a nonparametric estimate of the class prob-
ability p(D;) : p(Di) = %&, where n; is the number of synaptic vectors in ;. In general the quantizing
synaptic vectors nonparametrically estimate the probability density function p(x). No probability assump-
tions need be made about the observed training samples. For any subsct or volume V. C K", the voluime

probability p(V) is estimated as the ratio

pvy = ¥ | (4)

m
where ny is the number of synaptic vectors myj in V and m is the total number of synaptic vectors. In
the extreme case (4) gives p(R™®) = 1 and p(®) = 0.

Deterministic Competitive Learning Laws

The idea behind competitive learning is learn only if win. Losing ncurons, or rather their synaptic
fan-in vectors, do not learn. They also do not forget what they have already learned. The price is a
nondistributed representation® The synapses in a synaptic vector m; become in effect “grandmother”
synapses. Each synaptic elemen. m;; is a discrete memory unit, as in a random access memory.

In contrast, classical Hebbian® or correlation learning distributes learned pattern-vector information
across the entire synaptic connection matrix M. But a Hebbian system forgets learned pattern information
as it learns new pattern information.

The simplest deterministic competitive learning®'®2? law is, in component-wise notation,

my; = Si(y;)[Si(zi) — mi;) (5)
where 1i2;; is the time derivative of the synaptic value of the directed axonal connection from the ith
neuron in the input field Fx to the jth neuron in the output or competitive field fy. The n-by-m matrix
M consists of the my; values. The jth column of M is the fan-in synaptic vector m; = (myj,...,my;).
Scaling constants can be added or multiplied in (5) as desired. In contrast, the signal Hebbian learning®'*
law is

my; = —myj + Si(2:)S5(y;) - ' (6)
(5) and (6) differ in how they forget. All learning requires some forgetting. The competitive signal S; in
(5) nonlinearly scales the decay or forget term —my;. In practice”!'=1%:20 the competitive signal S; is a
zero-one or binary threshold function. Winners forget, losers remember.

There are n neurons in Fx and m competing neurons in Fy. Each neuron in Fx or Fy is a function
that transduces its real-valued activation z;(t) or y;(1) into a bounded signal S;(zi(t)) or Sj(y;(t)) at time
t. In principle the activation functions, or membrane potential differences, z; and y; can be unbounded.

In feedback networks, the signal functions S; and S; are usually assumed bounded and monotone
nondecreasing. So their activation derivatives S; and S} are nonnegative. In practice logistic or hyperbolic-
tangent signal functions arc often used. Then the signal functions S; and S; are strictly increasing and
hence their activation derivatives are positive:

dsS; ds;
Si=-=>0 and S = -2 >0. 7
= ;= g (M)
For instance, the logistic signal function S(z) = (1—¢7 7)1 with scale constant ¢ > 0 has an increasing
activation derivative S = ¢ S (1 —=S5) > 0. The logistic signal function rapidly approaches a binary

threshiold function for increasing values of c.




In competitive learning the Fy signal functions Sj are often binary threshold functions. Sj(f) = 1

if the jth competing neuron in Fy wins the competition for activation at time . Sj(t) = 0if the jth
ncuron loses.

The Fy signal functions S; are usually lincar in feedforward systems:  Si(z;) = z;. Then the sample
pattern x = (zy,...,z,) directly activates the system as the Fx signal state vector Sx(x) = x. Soin

practice the competitive learning law (5) becomes

Y:Il,'j = ID,(X) [-77;‘ - 1".‘)'] ' (8)

where Ip; is the zero-one indicator function of decision class ;. We assume synaptic vector m; codes for
class Dj, perhaps by hovering about the centroid of D;.
Kohonen’s recent!! supervised competitive learning (SCL) law is a reinforced version of (5):

ﬁz,-j = r,-(x) S]‘ [I,' - m,-j] , (9)

where S is a binary threshold function determined metrically. 5; = 1if x is closer in Euclidean distance
to the synaptic vector m; than to all other synaptic vectors m;. The new term r; in (8) is the reinforcement
function of the jth competing neuron in Fy . rj rewards when rj(x) = 1 and punishes when rj(x) = -1.

The reinforcement function r; is determined by the class membership of the pattern sample x. So (9)
is a supervised competitive learning law. rj(x) = 1 if x ¢ D; and the jih neuron wins or correctly
“classifies” x—if Ip;(x) = Sj(x) = 1. rj{(x) = —1if the winning jth neuron misclassifies the sample
pattern x. Misclassification means the jth neuron wins but x ¢ D;, or x ¢ Dj, for some ¢ # j. Then
Ip,(x) = Obut Ip,(x) = S; = 1. Since, with probability one, x belongs to exactly one decision class,
the reinforcement function reduces to a difference of decision-class indicator functions:

ry = ID,~ - Z ID. - (10)
i)
(10) makes explicit the dependence of r; on the knowledge of the decision class boundaries.
The unsupervised differential competitive learning!'® (DCL) law modulates the vector diflerence x — m;
with the competitive win rate .S",-:
mij = Si(y) [Siz:) — myj) (11)
where the signal velocity Sj decomposes as S} y; by the chain rule. The idea is learn only if change. The
signal velocity in (11) behaves in sign much as the reinforcement function in (9). The signal velocity S‘,—(t)
is positive or negative according as the jth competing neuron’s winning status is increasing or decreasing
at time ¢. The signal velocity does not depend on the decision-class indicator functions. So the DCL law
(11) is unsupervised.
In practice the Fx signal function S; is lincar. Then simulations!? show that the DCI, law and
Kohonen’s SCL law (9) bchave similarly. The DCL systems tend to converge to decision class centroids at
least as fast as SCL systems do and tend to wander about the centroids with less variance. The competitive

learning laws (5) and (9) ignore the win-rate information provided by the signal velocity in (11).
The pulse-coded™!® signal function S; is an exponentially weighted average of binary pulses:

SJ(t) = / ]/)(S) es—( ds y (12)

where the pulse function y; is defined by y;(t) = 1 if a pulse is present at time ¢ and y;(t) = 01if no
pulse is present. Then the signal velocity is the simple, locally available, difference

St = () - S . (13)




The velocity-difference representation (13) eliminates the need for an approximation algorithm to
calculate the signal velocity. Biological, or silicon, synapses can modify their values in realtime with
signal velocity information. Biological neurons transmit and receive pulse trains, not real-valued sigmoidal
outputs. The presence or absence of a pulse is casier to detect, amplify, and emit than a multi-valued
signal. (13) shows that much of the time the arriving pulse y;(t) indicates the instantancous sign of the
signal velocity.

The pulse-coded differential competitive law approximates!® the classical competitive law (5) as can
be secn by substituting (13) into (11) and expanding terms. A related approximation of the signal Hebb
law (6) occurs when (13) eliminates a product of signal velocities in a comparable differcntial Hebbian

learning®—10:13.15-16 |54,

Stochastic Competitive Learning Laws and Algorithms

Stochastic competitive learning laws are stochastic differential equations. They describe how synaptic
random processes change as a function of other random processes. Their solution is a synaptic random

process2!.

The deterministic competitive learning laws (5), (9), and (11) are simple stochastic differential equa-
tions if the signal terms S;(z;(t)) are random variables at each time ¢. This is so when the sample vectors
x are random samples, realizations of the pattern random-vector process x : R" — R". The randomness
in the vector components z; induces randomness in the signal function S; and thus in the synaptic vectors
m;. In general each term in a stochastic differential equation is a random process.

Another simple stochastic differential equation arises when random noise is added to a differential
equation. The randomness in the noise process induces randomness in the dependent variables. In general,
and in this discussion, an independent noise process is added to a stochastic differential equation.

The stochastic competitive learning law is, in vector notation,

dm; = S;(y) [S(x) — mj] dt + dB; , (14)
where S; is a steep competitive signal process taking values in [0,1] and S(x) = (S1(z1), ..., Sa(zn)) for
random pattern x. B; is a Brownian motion diffusion process.

The pseudo-derivative?! of B; is the zero-mean white noise process n;. The pseudo-derivative can be
formed as a mean-squared limit. The noise process n;j is zero-mean, E[n;j] = 0, has finite variance, and
is independent of the “signal” term S;j(y;) [S(x) — m;]. Then competitive learning laws can be written
in less rigorous, more intuitive, “noise” notation. For example, (14) becomes

m; = 5i(y) [S(x) — mj] + n; . (15)
In practice S; is a binary threshold function and can often be replaced with the class indicator function
Ip,. The Fx signal processes S; are linear. So (15) becomes
m; = Ip/(x)[x — m;] + n; . (16)
The stochastic version of Kohonen’s supervised competitive learning (SCL) law is
m; = rj(x) Si(y;) [x — my] + n; . (17)
The stochastic version of the differential competitive learning (DCL) law is

m; = Si(y)[x — mj] + nj , (18)

or, in pulse-coded form,




m; = [yi(t) - S5O} {x — m;] + n; , (19)
where the pulse process y; is a randon point process, pethaps Poisson in nature. (19) is thus a doubly

stochastic synaptic model.

For practical implementation these three stochastic competitive learning models can be written as
stochastic difference equations by replacing the third step in the following competitive AVQ algorithm.
(Historical note:  Tsypkin?? derived the “winning” parts of the UCL algorithm and, with his adaptive
Bayes approach, the SCL algorithm in a non-neural context.) A random noise termn has not been added
to the difference equations. The noise processes in the above models can represent unmodecled effects,

roundoff errors, or sample-size defects.

Competitive AVQ Algorithms
I. Initialize synaptic vectors: m;(0) = x(i), i=1, ..., m.
2. For random sample x(t), find the closest (“winning”) synaptic vector m;(t):

llmj(t) — x()l| = min |mi(t) — x| , (20)

where |[x]|?> = zZ + ... 4+ z2 is the squared Euclidean norm of x.

3. Update the winning synaptic vector(s) m;(t) by the UCL, SCL, or DCL learning algorithm.

Unsupervised Competitive Learning (UCL)

m;(t + 1) = mj(t) + cfx(t) — m;(t)] , (21)
m;(t +1) = m(t) if & #£ 35,
where, in the spirit of stochastic approximation??, ¢ is a slowly decreasing sequence of learning coefficients.
For instance, ¢; = .1(1 — 15455 for 10,000 samples x(t).

Supervised Competitive Learning (SCL)

m;(t+1) = m(t) + ¢ rj(x(t)) [x(t) — mj(t)] (22)
mj(t) + ¢ [x(t) —my(t)] if x correctly classified 03
m;(t) — ¢ [x(t) —my(t)] if x misclassified. (23)
Differential Competitive Learning (DCL)
mi(t+1) = m;(t) + cdSi(y;(1)) [x(t) — m;(t)], (24)

i

m;(t+ 1) m(t) il 7 £ 5,

-




where ASj(y;(2)) is the time change of the jth neuron's comy ctitive signal S;(y;) in the competition
field Fy:

ASi(yj (1)) = Syt + 1)) - Si(w (1)) (25)

In practice!? only the sign of the difference (25) may be used. The Fy neuronal activations y; can be
updated by an additive model:

n m
yilt+1) = y(t) + ) Sizi) mi(t) + D Sely) wij - (26)
i=1 k=1
The fixed competition matrix W defines a symmetric laleral inhibition topology within Fy . In the simplest
case, wj; = 1 and w;; = —1 for distinct i and j.

Stochastic Equilibrium and Convergence

Competitive synaptic vectors m; converge to decision class centroids. The centroids may be local
maxima of the sampled but unknown probability density function p(x).

In general, when there are more synaptic vectors than probability maxima, the synaptic vectors cluster
about local probability maxima. Comparatively few synaptic vectors may actually arrive at centroids. We
only consider convergence to centroids. The justification is that any local connected patch of the sample
space R" can be viewed as a candidate decision class. Each synaptic vector samples such a local patch
and converges to its centroid.

We first prove the AVQ Centroid Theorem: If a competitive AVQ system converges, it converges to
the centroid of the sampled decision class. The AVQ Centroid Theorem is an equilibrium or steady-state
result. We prove the theorem only for unsupervised competitive learning, but argue that it holds for
supervised and differential competitive learning in most cases of practical interest.

Next we use a Lyapunov argument to reprove and extend the AVQ Centroid Theorem to the AVQ
Convergence Theorem: Stochastic competitive learning systems are asymptotically stable, and synaptic
vectors converge to centroids. So competitive AVQ systems always converge, and converge exponentially
fast. Both results are true with probability one.

The unknown probability density function p(x) defines the class centroids, the mean-squared optimal
vectors of quantization. Competitive learning estimates these optimal quantization vectors without knowl-
edge of p(x). That is the advantage of competitive learning, and optimal learning in general.

AVQ Centroid Theorem:
Prob(m; = x;) = 1 at equilibrium. (27)

The centroid x; of decision class D; is defined by

/ x p(x) dx
D,

Xj = (28)
) dx
/D,l(x}
= E[x|x ¢ D;] . (29)

The random vector E{ x| ], the conditional expectation, is a function of Borel measurable subsets Dj of ™.




Proof. Suppose the jth ncuron in Fy wins the activation competition during the training interval.
Suppose the jth synaptic vector mj codes for decision class D;. So Ip;(x) = 1l S; = 1. Suppose
stochastic equilibrium has been reached:

m; = O | (30)

which holds with probability one (or in the mean-square seuse, depending on how the stochastic differentials
are defined). Take expectations of both sides of (30), use the zero-mean property of the noise process,
climinate the synaptic velocity vector mj with the competitive law (16), and expand to give

O = FE[my] (31)
= /R'- Ip;(x) (x — m;j) p(x) dx + Elnj] (32)

/ (x —my;) p(x) dx _ (33)
DJ

it

x p(x) dx —m; p(x) dx , (34)
D, :

2

since myj is constant with probability one. Solving for the equilibrium synaptic vector m; gives the cen-
troid x; defined by (28). Q.E.D.

In general the AVQ Centroid Theorem concludes that the average synaptic vector E{m;] equals the
jth centroid x; at equilibrium:

E'[m]] = Xj . (35)

The equilibrium synaptic vector m; vibrates randomly around the constant centroid x;. mj; equals X;
on average at each post-equilibration instant. Simulations'? exhibit such random wandering about the
centroid.

Synaptic vectors learn noise as well as signal. So they vibrate at equilibrium. The independent additive
noise process n; in (16) drives the random vibration. The steady-state condition (30) models the rare
event that noisc cancels signal. In general it models stochastic equilibrium in the absence of additive noise.

The general stochastic steady-state condition is defined by the stochastic differential equation

m; = n; . (36)

Taking expectations of both sides of (36) still gives (31), since the noise process n; is zero-mean, and
the argument proceeds as before. Taking a sccond expectation in (33) and using (31) gives (39).

The AVQ Centroid Theorem applies to the stochastic SCL law (17) because winners are picked
metrically by the ncarest-neighbor criterion (20). The reinforcement function r; in (10) reduces to
ri(x) = —Ip,(x) = =1 if the jth ncuron continually wins for random samples x from class D;.
This tends to occur once the synaptic vectors have spread out in 2™ and [; i1s close, usually contiguous,
to D;. Then mj converges to x;, the centroid of Dy, since the steady state condition (30) removes the
scaling constant. —1 that then appears in (33).

This argument holds only approximately when, in the exceptional case, m; repeatedly misclassifics
patterns x from several classes Dg. Then the difference of indicator functions in {10) replaces the single




indicator function Ip in (32). The resultant equilibrium mj is a more general ratio than the centroid.
The density p(x) must be integrated over R™ not just D;.

The AVQ Centroid Theorem applies similarly to the stochastic DCL law (18). A positive or negative
factor scales the difference x — my;. If, as in practice and in (24), a constant approximates the scaling
factor, the steady state condition (30) removes the constant from (33) and mj estimates the centroid x;.

The integrals in (31) - (34) are spatial integrals over R™ or subsets of I2*. Yet in the discrete UCL,
SCL, and DCL algorithms, the recursive equations for m;(t + 1} define temporal integrals over the training
interval.

The two integrals are approximately equal. The discrete random samples x(0), x(1), x(2), ... partially
enumerate the continuous distribution of equilibrium realizations of the random vector x. The time
index in the discrete algorithms approximates the “spatial index” underlying p(x). So the recursion
m;(t+1) = m;(t) + ... approximates the averaging integral. We sample patterns one at a time. We
integrate them all at a time.

The AVQ Centroid Theorem assumes that stochastic convergence occurs. Convergence is trivial for
continuous deterministic competitive learning, at least in feedforward networks. If S; is a positive constant
in (5), then m;; converges to S; exponentially fast. Convergence is not trivial for stochastic competitive

learning in noise.

The AVQ Convergence Theorem ensures exponential convergence. The theorem does not depend on
how the Fy neurons change in time. In effect metrical classification is assumed: S; = 1iff Ip (x) = 1.
The strictly decreasing deterministic Lyapunov function E[L] replaces'® the random Lyapunov function
L: C — R, where C is a closed and bounded (compact) subset of R™.

A strictly decreasing Lyapunov function yields asymptotic stability!”. Then the real parts of the
eigenvalues of the system Jacobian matrix are strictly negative, and locally the nonlinear system be-
haves linearly. Synaptic vectors converge® exponentially quickly to equilibrium points—to pattern-class
centroids—in the state space. Technically, nondegenerate Hessian matrix conditions must be assumed.

Else some eigenvalues can have zero real parts.

AVQ Convergence Theorem: Compelitive synaptic veclors converge exponentially quickly to pattern-
class centroids.

Proof.  Consider the random quadratic form L:

L = %ZZ(-‘L‘; - mij)2 . (37)
iy

Note that if x = X; in (37), then with probabilityone L > Oifany m; # x; and L = 0iff m; = X;
for every mj;.

The pattern vectors x do not change in time. (The following argument is still valid if the pattern
vectors x change slowly relative to synaptic changes—if the density p(x) is mildly nonstationary.) This
simplifies the stochastic derivative of L:

. aL aL
" = —— ',‘ e 71 ij 38
I .- 3z, T + Z':EJ: e m;; (38)

20 aii,- ij (39)
i g
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- ZZ(:. — myj) ny; (10)
- ZZID’(X) (zi — my) - ZZ(I" - i) g (a1)
i i

L is a random variable at every time 1. E[L] is a deterministic number at cvery t. The trick is to use the
average E[L] as a Lyapunov function for the stochastic compctitive dynamical system. For this we must
assume sufficient smoothness to interchange the time derivative and the probabilistic integral—to bring
the time derivative “inside” the integral. Then the zero-mean noise assumption, and the independence of
the noise process n; with the “signal” process x — mj, gives

N

E[L) (42)

- -Z/o Z (i — my;)? p(x) dx . (43)

So, on average by the learning law (16), E[L] < 0iff any synaptic vector m; moves along its trajectory.
So the competitive AVQ system is asymplotically stable®!? and, in general, converges exponentially quickly
to equilibria.

Suppose E[L] = 0. Every synaptic vector has reached equilibrium and is constant (with probability
one). Then!?, since p(x) is a nonnegative weight function, the weighted integral of the learning differences
z; — m;; must also be zero:

E[L)

[ - mypax = o (44)
5

in vector notation. (44) is identical to (33). So, with probability one, equilibrium synaptic vectors are
centroids. More generally, as discussed above, (35) holds. Average equilibrium synaptic vectors are cen-
troids: E[m;] = %;. Q.E.D.

The sum of integrals (43) defines the total mean-squared error of vector quantization for the partition
Dy, ..., D¢. The vector integral in (44) is the gradient of E[L] with respect to m;. So the AVQ Convergence
Theorem implies that class centroids—and, asymptotically, competitive synaptic vectors—minimize the
mean-squared error of vector quantization.

Then by (16), the synaptic vectors perform stochastic gradient descent on the mean-squared-error sur-
face in the pattern-plus-error space R™+!. The difference x(t) —~ m;j(t) behaves as an error vector. The
competitive system estimates the unknown centroid x; as x({) at each time ¢. Learning is unsupervised
but proceeds as if it were supervised.
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